Suppr超能文献

药物反应的计算模型确定了黑色素瘤中泛RAF和MEK抑制剂给药的突变特异性限制因素。

Computational modeling of drug response identifies mutant-specific constraints for dosing panRAF and MEK inhibitors in melanoma.

作者信息

Goetz Andrew, Shanahan Frances, Brooks Logan, Lin Eva, Mroue Rana, Cruz Darlene Dela, Hunsaker Thomas, Czech Bartosz, Dixit Purushottam, Segal Udi, Martin Scott, Foster Scott A, Gerosa Luca

机构信息

gRED Computational Sciences, Genentech, South San Francisco, CA, US.

Department of Biomedical Engineering, Yale University, New Haven, CT, US.

出版信息

bioRxiv. 2024 Aug 6:2024.08.02.606432. doi: 10.1101/2024.08.02.606432.

Abstract

PURPOSE

This study explores the potential of preclinical cell line response data and computational modeling in identifying optimal dosage requirements of pan-RAF (Belvarafenib) and MEK (Cobimetinib) inhibitors in melanoma treatment. Our research is motivated by the critical role of drug combinations in enhancing anti-cancer responses and the need to close the knowledge gap around selecting effective dosing strategies to maximize their potential.

RESULTS

In a drug combination screen of 43 melanoma cell lines, we identified unique dosage landscapes of panRAF and MEK inhibitors for NRAS vs BRAF mutant melanomas. Both experienced benefits, but with a notably more synergistic and narrow dosage range for NRAS mutant melanoma. Computational modeling and molecular experiments attributed the difference to a mechanism of adaptive resistance by negative feedback. We validated translatability of dose-response maps by accurately predicting tumor growth in xenografts. Then, we analyzed pharmacokinetic and tumor growth data from Phase 1 clinical trials of Belvarafenib with Cobimetinib to show that the synergy requirement imposes stricter precision dose constraints in NRAS mutant melanoma patients.

CONCLUSION

Leveraging pre-clinical data and computational modeling, our approach proposes dosage strategies that can optimize synergy in drug combinations, while also bringing forth the real-world challenges of staying within a precise dose range.

摘要

目的

本研究探讨临床前细胞系反应数据和计算模型在确定泛RAF(贝拉非尼)和MEK(考比替尼)抑制剂治疗黑色素瘤时的最佳剂量需求方面的潜力。我们的研究动机在于药物联合在增强抗癌反应中的关键作用,以及弥补围绕选择有效给药策略以最大化其潜力方面的知识差距的必要性。

结果

在对43种黑色素瘤细胞系进行的药物联合筛选中,我们确定了泛RAF和MEK抑制剂针对NRAS与BRAF突变型黑色素瘤的独特剂量格局。两者均有获益,但NRAS突变型黑色素瘤的协同作用更显著且剂量范围更窄。计算模型和分子实验将这种差异归因于负反馈导致的适应性耐药机制。我们通过准确预测异种移植瘤中的肿瘤生长,验证了剂量反应图谱的可转化性。然后,我们分析了贝拉非尼与考比替尼1期临床试验的药代动力学和肿瘤生长数据,以表明协同作用要求在NRAS突变型黑色素瘤患者中施加了更严格的精确剂量限制。

结论

利用临床前数据和计算模型,我们的方法提出了能够优化药物联合协同作用的剂量策略,同时也带来了维持在精确剂量范围内的现实挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cf7/11326189/7874817f0ab8/nihpp-2024.08.02.606432v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验