Suppr超能文献

药物反应的计算模型确定了黑色素瘤中泛RAF和MEK抑制剂给药的突变特异性限制因素。

Computational Modeling of Drug Response Identifies Mutant-Specific Constraints for Dosing panRAF and MEK Inhibitors in Melanoma.

作者信息

Goetz Andrew, Shanahan Frances, Brooks Logan, Lin Eva, Mroue Rana, Dela Cruz Darlene, Hunsaker Thomas, Czech Bartosz, Dixit Purushottam, Segal Udi, Martin Scott, Foster Scott A, Gerosa Luca

机构信息

gRED Computational Sciences, Genentech, South San Francisco, CA 94080, USA.

Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA.

出版信息

Cancers (Basel). 2024 Aug 22;16(16):2914. doi: 10.3390/cancers16162914.

Abstract

PURPOSE

This study explores the potential of pre-clinical in vitro cell line response data and computational modeling in identifying the optimal dosage requirements of pan-RAF (Belvarafenib) and MEK (Cobimetinib) inhibitors in melanoma treatment. Our research is motivated by the critical role of drug combinations in enhancing anti-cancer responses and the need to close the knowledge gap around selecting effective dosing strategies to maximize their potential.

RESULTS

In a drug combination screen of 43 melanoma cell lines, we identified specific dosage landscapes of panRAF and MEK inhibitors for NRAS vs. BRAF mutant melanomas. Both experienced benefits, but with a notably more synergistic and narrow dosage range for NRAS mutant melanoma (mean Bliss score of 0.27 in NRAS vs. 0.1 in BRAF mutants). Computational modeling and follow-up molecular experiments attributed the difference to a mechanism of adaptive resistance by negative feedback. We validated the in vivo translatability of in vitro dose-response maps by predicting tumor growth in xenografts with high accuracy in capturing cytostatic and cytotoxic responses. We analyzed the pharmacokinetic and tumor growth data from Phase 1 clinical trials of Belvarafenib with Cobimetinib to show that the synergy requirement imposes stricter precision dose constraints in NRAS mutant melanoma patients.

CONCLUSION

Leveraging pre-clinical data and computational modeling, our approach proposes dosage strategies that can optimize synergy in drug combinations, while also bringing forth the real-world challenges of staying within a precise dose range. Overall, this work presents a framework to aid dose selection in drug combinations.

摘要

目的

本研究探讨临床前体外细胞系反应数据和计算模型在确定泛RAF(贝拉非尼)和MEK(考比替尼)抑制剂治疗黑色素瘤的最佳剂量需求方面的潜力。我们的研究动机在于药物联合在增强抗癌反应中的关键作用,以及弥补围绕选择有效给药策略以最大化其潜力方面的知识差距的必要性。

结果

在对43种黑色素瘤细胞系进行的药物联合筛选中,我们确定了泛RAF和MEK抑制剂针对NRAS与BRAF突变黑色素瘤的特定剂量格局。两者都有获益,但NRAS突变黑色素瘤的协同作用更显著且剂量范围更窄(NRAS的平均布利斯评分0.27,而BRAF突变体为0.1)。计算模型和后续分子实验将这种差异归因于负反馈导致的适应性耐药机制。我们通过在异种移植模型中高精度预测肿瘤生长以捕捉细胞生长抑制和细胞毒性反应,验证了体外剂量反应图谱的体内可转化性。我们分析了贝拉非尼与考比替尼1期临床试验的药代动力学和肿瘤生长数据,以表明协同作用要求在NRAS突变黑色素瘤患者中施加了更严格的精确剂量限制。

结论

利用临床前数据和计算模型,我们提出的方法能够优化药物联合中的协同作用,同时也带来了在精确剂量范围内给药的现实挑战。总体而言,这项工作提出了一个有助于药物联合剂量选择的框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a544/11353013/0eba4b66fb13/cancers-16-02914-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验