Suppr超能文献

基于磁共振成像报告开发用于检测脊柱转移瘤的自然语言处理算法。

Development of a natural language processing algorithm for the detection of spinal metastasis based on magnetic resonance imaging reports.

作者信息

Mostafa Evan, Hui Aaron, Aasman Boudewijn, Chowdary Kamlesh, Mani Kyle, Mardakhaev Edward, Zampolin Richard, Blumfield Einat, Berman Jesse, De La Garza Ramos Rafael, Fourman Mitchell, Yassari Reza, Eleswarapu Ananth, Mirhaji Parsa

机构信息

Department of Orthopaedic Surgery, Montefiore Medical Center, 111 E 210th St, Bronx, NY, 10467, United States.

Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, 10461, NY, United States.

出版信息

N Am Spine Soc J. 2024 Jul 3;19:100513. doi: 10.1016/j.xnsj.2024.100513. eCollection 2024 Sep.

Abstract

BACKGROUND

Metastasis to the spinal column is a common complication of malignancy, potentially causing pain and neurologic injury. An automated system to identify and refer patients with spinal metastases can help overcome barriers to timely treatment. We describe the training, optimization and validation of a natural language processing algorithm to identify the presence of vertebral metastasis and metastatic epidural cord compression (MECC) from radiology reports of spinal MRIs.

METHODS

Reports from patients with spine MRI studies performed between January 1, 2008 and April 14, 2019 were reviewed by a team of radiologists to assess for the presence of cancer and generate a labeled dataset for model training. Using regular expression, impression sections were extracted from the reports and converted to all lower-case letters with all nonalphabetic characters removed. The reports were then tokenized and vectorized using the doc2vec algorithm. These were then used to train a neural network to predict the likelihood of spinal tumor or MECC. For each report, the model provided a number from 0 to 1 corresponding to its impression. We then obtained 111 MRI reports from outside the test set, 92 manually labeled negative and 19 with MECC to test the model's performance.

RESULTS

About 37,579 radiology reports were reviewed. About 36,676 were labeled negative, and 903 with MECC. We chose a cutoff of 0.02 as a positive result to optimize for a low false negative rate. At this threshold we found a 100% sensitivity rate with a low false positive rate of 2.2%.

CONCLUSIONS

The NLP model described predicts the presence of spinal tumor and MECC in spine MRI reports with high accuracy. We plan to implement the algorithm into our EMR to allow for faster referral of these patients to appropriate specialists, allowing for reduced morbidity and increased survival.

摘要

背景

脊柱转移是恶性肿瘤的常见并发症,可能导致疼痛和神经损伤。一个用于识别和转诊脊柱转移患者的自动化系统有助于克服及时治疗的障碍。我们描述了一种自然语言处理算法的训练、优化和验证,该算法用于从脊柱MRI的放射学报告中识别椎体转移和转移性硬膜外脊髓压迫(MECC)的存在。

方法

一组放射科医生对2008年1月1日至2019年4月14日期间进行脊柱MRI检查的患者报告进行了审查,以评估癌症的存在情况,并生成用于模型训练的标记数据集。使用正则表达式从报告中提取印象部分,并将其转换为全小写字母,去除所有非字母字符。然后使用doc2vec算法对报告进行分词和向量化。这些数据随后用于训练神经网络,以预测脊柱肿瘤或MECC的可能性。对于每份报告,模型提供一个从0到1的数字,对应其印象。然后,我们从测试集之外获得了111份MRI报告,其中92份手动标记为阴性,19份有MECC,以测试模型的性能。

结果

共审查了约37579份放射学报告。约36676份被标记为阴性,903份有MECC。我们选择0.02作为阳性结果的临界值,以优化低假阴性率。在此阈值下,我们发现灵敏度为100%,假阳性率低至为2.2%。

结论

所描述的自然语言处理模型能够高精度地预测脊柱MRI报告中脊柱肿瘤和MECC的存在情况。我们计划将该算法应用于我们的电子病历系统,以便更快地将这些患者转诊给合适的专科医生,从而降低发病率并提高生存率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce55/11325227/90777838e822/gr1a.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验