Suppr超能文献

用于自动量化自由文本骨闪烁扫描报告中所报告的骨转移的自然语言处理。

Natural language processing for automated quantification of bone metastases reported in free-text bone scintigraphy reports.

作者信息

Groot Olivier Q, Bongers Michiel E R, Karhade Aditya V, Kapoor Neal D, Fenn Brian P, Kim Jason, Verlaan J J, Schwab Joseph H

机构信息

Department of Orthopaedic Surgery, Orthopaedic Oncology Service, Massachusetts General Hospital - Harvard Medical School, Boston, MA, USA.

Department of Orthopaedic Surgery, University Medical Center Utrecht - Utrecht University, Utrecht, The Netherlands.

出版信息

Acta Oncol. 2020 Dec;59(12):1455-1460. doi: 10.1080/0284186X.2020.1819563. Epub 2020 Sep 12.

Abstract

BACKGROUND

The widespread use of electronic patient-generated health data has led to unprecedented opportunities for automated extraction of clinical features from free-text medical notes. However, processing this rich resource of data for clinical and research purposes, depends on labor-intensive and potentially error-prone manual review. The aim of this study was to develop a natural language processing (NLP) algorithm for binary classification (single metastasis versus two or more metastases) in bone scintigraphy reports of patients undergoing surgery for bone metastases.

MATERIAL AND METHODS

Bone scintigraphy reports of patients undergoing surgery for bone metastases were labeled each by three independent reviewers using a binary classification (single metastasis versus two or more metastases) to establish a ground truth. A stratified 80:20 split was used to develop and test an extreme-gradient boosting supervised machine learning NLP algorithm.

RESULTS

A total of 704 free-text bone scintigraphy reports from 704 patients were included in this study and 617 (88%) had multiple bone metastases. In the independent test set ( = 141) not used for model development, the NLP algorithm achieved an 0.97 AUC-ROC (95% confidence interval [CI], 0.92-0.99) for classification of multiple bone metastases and an 0.99 AUC-PRC (95% CI, 0.99-0.99). At a threshold of 0.90, NLP algorithm correctly identified multiple bone metastases in 117 of the 124 who had multiple bone metastases in the testing cohort (sensitivity 0.94) and yielded 3 false positives (specificity 0.82). At the same threshold, the NLP algorithm had a positive predictive value of 0.97 and F1-score of 0.96.

CONCLUSIONS

NLP has the potential to automate clinical data extraction from free text radiology notes in orthopedics, thereby optimizing the speed, accuracy, and consistency of clinical chart review. Pending external validation, the NLP algorithm developed in this study may be implemented as a means to aid researchers in tackling large amounts of data.

摘要

背景

电子患者生成的健康数据的广泛使用为从自由文本医学记录中自动提取临床特征带来了前所未有的机遇。然而,为了临床和研究目的处理这一丰富的数据资源,依赖于劳动密集型且可能容易出错的人工审核。本研究的目的是开发一种自然语言处理(NLP)算法,用于对接受骨转移手术患者的骨闪烁扫描报告进行二元分类(单个转移灶与两个或更多转移灶)。

材料与方法

对接受骨转移手术患者的骨闪烁扫描报告,由三位独立审核人员分别使用二元分类(单个转移灶与两个或更多转移灶)进行标注,以确定基本事实。采用80:20的分层划分来开发和测试一种极端梯度提升监督式机器学习NLP算法。

结果

本研究纳入了704例患者的704份自由文本骨闪烁扫描报告,其中617例(88%)有多处骨转移。在未用于模型开发的独立测试集(n = 141)中,NLP算法对多处骨转移的分类实现了0.97的AUC-ROC(95%置信区间[CI],0.92 - 0.99)以及0.99的AUC-PRC(95% CI,0.99 - 0.99)。在阈值为0.90时,NLP算法在测试队列中124例有多处骨转移的患者中正确识别出117例(灵敏度0.94),并产生3例假阳性(特异度0.82)。在相同阈值下,NLP算法的阳性预测值为0.97,F1分数为0.96。

结论

NLP有潜力实现从骨科自由文本放射学记录中自动提取临床数据,从而优化临床图表审核的速度、准确性和一致性。在等待外部验证期间,本研究开发的NLP算法可作为帮助研究人员处理大量数据的一种手段来实施。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验