Suppr超能文献

用于固定离子运动以实现光稳定钙钛矿太阳能电池的空穴传输材料的分子设计

Molecular Design of Hole Transport Materials to Immobilize Ion Motion for Photostable Perovskite Solar Cells.

作者信息

Zhang Zheng, Duan Chenghao, Wang Sijing, Xie Tianyou, Zou Feilin, Luo Yang, Tang Ruijia, Guo Kunpeng, Yuan Ligang, Zhang Kaicheng, Wang Yao, Qiu Jianhang, Yan Keyou

机构信息

School of Environment and Energy, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510000, China.

Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan, 030024, China.

出版信息

Angew Chem Int Ed Engl. 2024 Nov 25;63(48):e202412042. doi: 10.1002/anie.202412042. Epub 2024 Oct 17.

Abstract

Poor operational stability is a crucial factor limiting the further application of perovskite solar cells (PSCs). Organic semiconductor layers can be a powerful means for reinforcing interfaces and inhibiting ion migration. Herein, two hole-transporting molecules, pDPA-SFX and mDPA-SFX, are synthesized with tuned substituent connection sites. The meta-substituted mDPA-SFX results in a larger dipole moment, more ordered packing, and better charge mobility than pDPA-SFX, accompanying with strong interface bonding on perovskite surfaces and suppressed ion motion as well. Importantly, mDPA-SFX-based PSCs exhibit an efficiency that has significantly increased from 22.5 % to 24.8 % and a module-based efficiency of 19.26 % with an active area of 12.95 cm. The corresponding cell retain 94.8 % of its initial efficiency at maximum power point tracking (MPPT) after 1,000 h (T=1,000 h). The MPPT T lifetime is as long as 2,238 h. This work illustrates that a small degree of structural variation in organic compounds leaves considerable room for developing new HTMs for light stable PSCs.

摘要

较差的操作稳定性是限制钙钛矿太阳能电池(PSC)进一步应用的关键因素。有机半导体层可能是强化界面和抑制离子迁移的有效手段。在此,通过调整取代基连接位点合成了两种空穴传输分子pDPA-SFX和mDPA-SFX。间位取代的mDPA-SFX比pDPA-SFX具有更大的偶极矩、更有序的堆积以及更好的电荷迁移率,同时在钙钛矿表面具有较强的界面键合且离子运动受到抑制。重要的是,基于mDPA-SFX的PSC表现出效率从22.5%显著提高到24.8%,以及基于模块的效率为19.26%,活性面积为12.95 cm。相应的电池在最大功率点跟踪(MPPT)1000小时(T = 1000小时)后保留其初始效率的94.8%。MPPT T寿命长达2238小时。这项工作表明,有机化合物中较小程度的结构变化为开发用于光稳定PSC的新型空穴传输材料留下了相当大的空间。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验