Suppr超能文献

Transformations to the aluminum coordination environment and network polymerization in amorphous aluminosilicates under pressure.

作者信息

Gammond Lawrence V D, Zeidler Anita, Youngman Randall E, Fischer Henry E, Bull Craig L, Salmon Philip S

机构信息

Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom.

Science and Technology Division, Corning Incorporated, Corning, New York 14831, USA.

出版信息

J Chem Phys. 2024 Aug 21;161(7). doi: 10.1063/5.0218574.

Abstract

The structure of calcium aluminosilicate glasses (CaO)x(Al2O3)y(SiO2)1-x-y with the near tectosilicate compositions x ≃ 0.19 and 1 - x - y ≃ 0.61 or x ≃ 0.26 and 1 - x - y ≃ 0.49 was investigated by in situ high-pressure neutron diffraction and 27Al nuclear magnetic resonance (NMR) spectroscopy. The results show three distinct pressure regimes for the transformation of the aluminum coordination environment from tetrahedral to octahedral, which map onto the deformations observed in the production of permanently densified materials. The oxygen packing fraction serves as a marker for signaling a change to the coordination number of the network forming motifs. For a wide variety of permanently densified aluminosilicates, the aluminum speciation shares a common dependence on the reduced density ρ' = ρ/ρ0, where ρ is the density and ρ0 is its value for the uncompressed material. The observed increase in the Al-O coordination number with ρ' originates primarily from the formation of six-coordinated aluminum Al(VI) species, the fraction of which increases rapidly beyond a threshold ρthr'∼ 1.1. The findings are combined to produce a self-consistent model for pressure-induced structural change. Provided the glass network is depolymerized, one-coordinated non-bridging oxygen atoms are consumed to produce two-coordinated bridging oxygen atoms, thus increasing the network connectivity in accordance with the results from 17O NMR experiments. Otherwise, three-coordinated oxygen atoms or triclusters appear, and their fraction is quantified by reference to the mean coordination number of the silicon plus aluminum species. The impact of treating Al(VI) as a network modifier is discussed.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验