Suppr超能文献

用于药物非晶态固体分散体的新型聚合物辅料的数据驱动设计

Data-Driven Design of Novel Polymer Excipients for Pharmaceutical Amorphous Solid Dispersions.

作者信息

Di Mare Elena J, Punia Ashish, Lamm Matthew S, Rhodes Timothy A, Gormley Adam J

机构信息

Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States.

Analytical Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States.

出版信息

Bioconjug Chem. 2024 Sep 18;35(9):1363-1372. doi: 10.1021/acs.bioconjchem.4c00294. Epub 2024 Aug 16.

Abstract

About 90% of active pharmaceutical ingredients (APIs) in the oral drug delivery system pipeline have poor aqueous solubility and low bioavailability. To address this problem, amorphous solid dispersions (ASDs) embed hydrophobic APIs within polymer excipients to prevent drug crystallization, improve solubility, and increase bioavailability. There are a limited number of commercial polymer excipients, and the structure-function relationships which lead to successful ASD formulations are not well-documented. There are, however, certain solid-state ASD characteristics that inform ASD performance. One characteristic shared by successful ASDs is a high glass transition temperature (), which correlates with higher shelf stability and decreased drug crystallization. We aim to identify how polymer features such as side chain geometry, backbone methylation, and hydrophilic-lipophilic balance impact to design copolymers capable of forming high- ASDs. We tested a library of 50 ASD formulations (18 previously studied and 32 newly synthesized) of the model drug probucol with copolymers synthesized through automated photoinduced electron/energy transfer-reversible addition-fragmentation chain-transfer (PET-RAFT) polymerization. A machine learning (ML) algorithm was trained on the data to identify the major factors influencing , including backbone methylation and nonlinear side chain geometry. In both polymer alone and probucol-loaded ASDs, a Random Forest Regressor captured structure-function trends in the data set and accurately predicted with an average > 0.83 across a 10-fold cross validation. This ML model will be used to predict novel copolymers to design ASDs with high , a crucial factor in predicting ASD success.

摘要

口服给药系统研发流程中的活性药物成分(API)约90%具有较差的水溶性和低生物利用度。为解决这一问题,无定形固体分散体(ASD)将疏水性API嵌入聚合物辅料中,以防止药物结晶,提高溶解度,并增加生物利用度。市售聚合物辅料数量有限,且导致成功的ASD制剂的结构-功能关系尚无充分记录。然而,存在某些固态ASD特性可反映ASD性能。成功的ASD共有的一个特性是高玻璃化转变温度(),这与更高的货架稳定性和减少的药物结晶相关。我们旨在确定聚合物特征(如侧链几何形状、主链甲基化和亲水-亲脂平衡)如何影响,以设计能够形成高的ASD的共聚物。我们用通过自动光诱导电子/能量转移-可逆加成-断裂链转移(PET-RAFT)聚合合成的共聚物测试了50种ASD制剂(18种先前已研究,32种新合成)的模型药物普罗布考库文件。在数据上训练了一种机器学习(ML)算法,以识别影响的主要因素,包括主链甲基化和非线性侧链几何形状。在单独的聚合物和负载普罗布考的ASD中,随机森林回归器捕捉了数据集中的结构-功能趋势,并在10倍交叉验证中以平均>0.83准确预测了。该ML模型将用于预测新型共聚物,以设计具有高的ASD制剂,这是预测ASD成功的关键因素。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验