Hadj Bouzid Amel Imene, Bui Stephanie, Benlala Ilyes, Berger Patrick, Hutt Antoine, Liberge Renan, Habert Paul, Gaubert Jean-Yves, Baque-Juston Marie, Morel Baptiste, Ferretti Gilbert, Denis de Senneville Baudouin, Laurent François, Macey Julie, Dournes Gaël
Univ. Bordeaux, INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33600, Pessac, France.
CHU Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Paediatric Cystic Fibrosis Reference Center (CRCM), CIC 1401, F-33600, Pessac, France.
Eur Radiol. 2025 Feb;35(2):815-827. doi: 10.1007/s00330-024-11019-5. Epub 2024 Aug 16.
Holistic segmentation of CT structural alterations with 3D deep learning has recently been described in cystic fibrosis (CF), allowing the measurement of normalized volumes of airway abnormalities (NOVAA-CT) as an automated quantitative outcome. Clinical validations are needed, including longitudinal and multicenter evaluations.
The validation study was retrospective between 2010 and 2023. CF patients undergoing Elexacaftor/Tezacaftor/Ivacaftor (ETI) or corticosteroids for allergic broncho-pulmonary aspergillosis (ABPA) composed the monocenter ETI and ABPA groups, respectively. Patients from six geographically distinct institutions composed a multicenter external group. All patients had completed CT and pulmonary function test (PFT), with a second assessment at 1 year in case of ETI or ABPA treatment. NOVAA-CT quantified bronchiectasis, peribronchial thickening, bronchial mucus, bronchiolar mucus, collapse/consolidation, and their overall total abnormal volume (TAV). Two observers evaluated the visual Bhalla score.
A total of 139 CF patients (median age, 15 years [interquartile range: 13-25]) were evaluated. All correlations between NOVAA-CT to both PFT and Bhalla score were significant in the ETI (n = 60), ABPA (n = 20), and External groups (n = 59), such as the normalized TAV (ρ ≥ 0.76; p < 0.001). In both ETI and ABPA groups, there were significant longitudinal improvements in peribronchial thickening, bronchial mucus, bronchiolar mucus and collapse/consolidation (p ≤ 0.001). An additional reversibility in bronchiectasis volume was quantified with ETI (p < 0.001). Intraclass correlation coefficient of reproducibility was > 0.99.
NOVAA-CT automated scoring demonstrates validity, reliability and responsiveness for monitoring CF severity over an entire lung and quantifies therapeutic effects on lung structure at CT, such as the volumetric reversibility of airway abnormalities with ETI.
Normalized volume of airway abnormalities at CT automated 3D outcome enables objective, reproducible, and holistic monitoring of cystic fibrosis severity over an entire lung for management and endpoints during therapeutic trials.
Visual scoring methods lack sensitivity and reproducibility to assess longitudinal bronchial changes in cystic fibrosis (CF). AI-driven volumetric CT scoring correlates longitudinally to disease severity and reliably improves with Elexacaftor/Tezacaftor/Ivacaftor or corticosteroid treatments. AI-driven volumetric CT scoring enables reproducible monitoring of lung disease severity in CF and quantifies longitudinal structural therapeutic effects.
最近在囊性纤维化(CF)中描述了使用3D深度学习对CT结构改变进行整体分割,从而能够测量气道异常的标准化体积(NOVAA-CT)作为一种自动定量结果。需要进行临床验证,包括纵向和多中心评估。
验证研究为回顾性研究,时间跨度为2010年至2023年。接受艾列卡福托/替扎卡福托/依伐卡福托(ETI)治疗或因过敏性支气管肺曲霉病(ABPA)接受皮质类固醇治疗的CF患者分别组成单中心ETI组和ABPA组。来自六个地理位置不同机构的患者组成多中心外部组。所有患者均完成了CT和肺功能测试(PFT),如果接受ETI或ABPA治疗,则在1年后进行第二次评估。NOVAA-CT对支气管扩张、支气管周围增厚、支气管黏液、细支气管黏液、肺不张/实变及其总体异常总体积(TAV)进行量化。两名观察者评估视觉巴拉评分。
共评估了139例CF患者(中位年龄15岁[四分位间距:13 - 25岁])。在ETI组(n = 60)、ABPA组(n = 20)和外部组(n = 59)中,NOVAA-CT与PFT和巴拉评分之间的所有相关性均显著,如标准化TAV(ρ≥0.76;p < 0.001)。在ETI组和ABPA组中,支气管周围增厚、支气管黏液、细支气管黏液和肺不张/实变均有显著的纵向改善(p≤0.001)。ETI治疗使支气管扩张体积有额外的可逆性(p < 0.001)。重复性的组内相关系数> 0.99。
NOVAA-CT自动评分在监测整个肺部CF严重程度方面具有有效性、可靠性和反应性,并能在CT上量化对肺结构的治疗效果,如ETI治疗使气道异常的体积可逆。
CT自动3D结果的气道异常标准化体积能够对整个肺部的囊性纤维化严重程度进行客观、可重复和整体的监测,用于治疗试验中的管理和终点评估。
视觉评分方法在评估囊性纤维化(CF)的纵向支气管变化时缺乏敏感性和可重复性。人工智能驱动的容积CT评分与疾病严重程度纵向相关,并在接受艾列卡福托/替扎卡福托/依伐卡福托或皮质类固醇治疗后可靠改善。人工智能驱动的容积CT评分能够对CF中的肺部疾病严重程度进行可重复监测,并量化纵向结构治疗效果。