Centre for Nano and Material Sciences, Jain (Deemed-to-Be University), Jain Global Campus, Kanakapura Road, Bangalore, 562112, Karnataka, India.
The Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, 34151, Italy.
Mikrochim Acta. 2024 Aug 16;191(9):540. doi: 10.1007/s00604-024-06619-3.
For the first time the sensitive determination of carbendatim (CRB) is reported utilizing a well-designed sensing architecture based on vanadium diselenide-multiwalled carbon nanotube (VSMC). FTIR, XRD, FESEM, EDS, and EIS were employed to evaluate the sensor's structural integrity, and the results demonstrated the successful integration of nanomaterials, resulting in a robust and sensitive electrochemical sensor. Cyclic voltammetry (CV) and chronoamperometric (CA) investigations showed that the sensor best performed at pH 8.0 (BRB) with an excellent detection limit of 9.80 nM with a wide linear range of 0.1 to 10.0 µM. A more thermodynamically viable oxidation of CRB was observed at the VSMC/GCE, with a shift of 200 mV in peak potential towards the less positive side compared with the unmodified GCE. In addition, the sensor demonstrated facile heterogeneous electron transfer, favorable anti-fouling traits in the presence of a wide range of interferents, good stability, and reproducible analytical performance. Finally, the developed sensor was validated for real-time quantification of CRB from spiked water, food, and bio-samples, which depicted acceptable recoveries (98.6 to 101.5%) with RSD values between 0.35 and 2.23%. Further, to derive the possible sensing mechanism, the valence orbitals projected density of states (PDOS) for C, H, and N atoms of an isolated CRB molecule, VSe + CNT and VSe + CNT + CRB were calculated using density functional theory (DFT) calculations. The dominant charge transfer from the valence 2p-orbitals of the C and N atoms of CRB to CNT is responsible for the electrochemical sensing of CRB molecules.
首次报道了利用基于二硒化钒-多壁碳纳米管(VSMC)的精心设计的传感结构对卡苯达嗪(CRB)进行灵敏测定。FTIR、XRD、FESEM、EDS 和 EIS 用于评估传感器的结构完整性,结果表明成功整合了纳米材料,从而产生了一种坚固而灵敏的电化学传感器。循环伏安法(CV)和计时安培法(CA)研究表明,该传感器在 pH 8.0(BRB)下表现最佳,检测限为 9.80 nM,线性范围为 0.1 至 10.0 µM。与未修饰的 GCE 相比,在 VSMC/GCE 上观察到 CRB 的热力学上更可行的氧化,峰电位向更正方向移动了 200 mV。此外,该传感器表现出易于进行非均相电子转移、在存在广泛干扰物的情况下具有良好的抗污特性、良好的稳定性和可重复的分析性能。最后,该开发的传感器用于实时从加标水样、食品和生物样品中定量 CRB,回收率在 98.6 至 101.5%之间,相对标准偏差(RSD)值在 0.35 至 2.23%之间。此外,为了推导可能的传感机制,使用密度泛函理论(DFT)计算了孤立 CRB 分子、VSe + CNT 和 VSe + CNT + CRB 的 C、H 和 N 原子的价轨道投影态密度(PDOS)。CRB 分子的电化学传感归因于来自 CRB 的 C 和 N 原子的价 2p-轨道与 CNT 的主要电荷转移。