Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.
Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA.
FASEB J. 2024 Aug 31;38(16):e23891. doi: 10.1096/fj.202400672RR.
Atrial Natriuretic Peptide (ANP) plays an important role in blood pressure regulation. Low levels of ANP correlate with the development of salt-sensitive hypertension (SS-HTN). Our previous studies indicated that ANP deficiency exacerbated renal function decline in SS-HTN. In the heart and fat tissue, ANP was reported to affect lipid peroxidation and mitochondrial bioenergetics but the effects of ANP on mitochondrial function in the kidney are unexplored. We hypothesized that ANP deficiency in SS-HTN causes renal bioenergetic shift, leading to disruption of mitochondrial network and oxidative stress. To address the hypothesis, we placed Dahl SS wild-type (SS) and ANP knockout (SS) rats on 4% NaCl high salt (HS) diet to induce HTN or maintained them on 0.4% NaCl normal salt (NS) diet and assessed mitochondrial bioenergetics and dynamics using spectrofluorimetry, Seahorse assay, electron paramagnetic resonance (EPR) spectroscopy, Western blotting, electron microscopy, PCR and cytokine assays. We report that under high salt conditions, associated with hypertension and renal damage, the SS rats exhibit a decrease in mitochondrial membrane potential and elevation in mitochondrial ROS levels compared to SS. The redox shift is also evident by the presence of more pronounced medullar lipid peroxidation in the SS strain. We also revealed fragmented, more damaged mitochondria in the SS rats, accompanied by increased turnover and biogenesis. Overall, our data indicate that ANP deficiency causes disruptions in mitochondrial bioenergetics and dynamics which likely contributes to aggravation of the renal damage and hypertension in the Dahl SS rat; the major pathological effects are evident in the groups subjected to a combined salt and ANP deficiency-induced mitochondrial stress.
心房利钠肽 (ANP) 在血压调节中发挥着重要作用。ANP 水平降低与盐敏感性高血压 (SS-HTN) 的发生有关。我们之前的研究表明,ANP 缺乏会加重 SS-HTN 患者的肾功能下降。在心脏和脂肪组织中,已有研究报道 ANP 会影响脂质过氧化和线粒体生物能学,但 ANP 对肾脏中线粒体功能的影响尚未得到探索。我们假设 SS-HTN 中的 ANP 缺乏会导致肾脏生物能学转变,从而破坏线粒体网络并引发氧化应激。为了验证这一假设,我们将 Dahl SS 野生型 (SS) 和 ANP 敲除 (SS) 大鼠置于 4% NaCl 高盐 (HS) 饮食中以诱导 HTN,或维持于 0.4% NaCl 正常盐 (NS) 饮食中,并使用荧光分光光度法、 Seahorse 测定法、电子顺磁共振 (EPR) 光谱法、Western blot、电子显微镜、PCR 和细胞因子测定法评估线粒体生物能学和动力学。我们报告称,在高盐条件下,与高血压和肾脏损伤相关,与 SS 大鼠相比,SS 大鼠的线粒体膜电位降低,线粒体 ROS 水平升高。SS 大鼠髓质脂质过氧化程度更为明显,这也表明存在氧化还原转移。我们还发现 SS 大鼠的线粒体碎片化、损伤更严重,伴随着周转率和生物发生增加。总的来说,我们的数据表明,ANP 缺乏会导致线粒体生物能学和动力学的破坏,这可能会加剧 Dahl SS 大鼠的肾脏损伤和高血压;主要的病理效应在同时受到盐和 ANP 缺乏引起的线粒体应激的组中更为明显。