Suppr超能文献

基于富勒烯的空穴传输分子实现高效稳定的倒置钙钛矿太阳能电池

Efficient and Stable Inverted Perovskite Solar Cells Enabled by a Fullerene-Based Hole Transport Molecule.

作者信息

Luo Jiefeng, Zhang Hui, Sun Chao, Hou Enlong, Wang Xin, Guo Sai, Chen Jingfu, Cheng Shuo, Chen Shanshan, Zhao Xinjing, Xie Liqiang, Meng Lingyi, Tian Chengbo, Wei Zhanhua

机构信息

Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China.

CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.

出版信息

Angew Chem Int Ed Engl. 2024 Dec 16;63(51):e202411659. doi: 10.1002/anie.202411659. Epub 2024 Oct 16.

Abstract

Designing an efficient modification molecule to mitigate non-radiative recombination at the NiO/perovskite interface and improve perovskite quality represents a challenging yet crucial endeavor for achieving high-performance inverted perovskite solar cells (PSCs). Herein, we synthesized a novel fullerene-based hole transport molecule, designated as FHTM, by integrating C with 12 carbazole-based moieties, and applied it as a modification molecule at the NiO/perovskite interface. The in situ self-doping effect, triggered by electron transfer between carbazole-based moiety and C within the FHTM molecule, along with the extended π conjugated moiety of carbazole groups, significantly enhances FHTM's hole mobility. Coupled with optimized energy level alignment and enhanced interface interactions, the FHTM significantly enhances hole extraction and transport in corresponding devices. Additionally, the introduced FHTM efficiently promotes homogeneous nucleation of perovskite, resulting in high-quality perovskite films. These combined improvements led to the FHTM-based PSCs yielding a champion efficiency of 25.58 % (Certified: 25.04 %), notably surpassing that of the control device (20.91 %). Furthermore, the unencapsulated device maintained 93 % of its initial efficiency after 1000 hours of maximum power point tracking under continuous one-sun illumination. This study highlights the potential of functionalized fullerenes as hole transport materials, opening up new avenues for their application in the field of PSCs.

摘要

设计一种高效的修饰分子以减轻氧化镍/钙钛矿界面处的非辐射复合并提高钙钛矿质量,对于实现高性能倒置钙钛矿太阳能电池(PSC)而言是一项具有挑战性但至关重要的工作。在此,我们通过将C与12个咔唑基部分整合,合成了一种新型的基于富勒烯的空穴传输分子,命名为FHTM,并将其作为修饰分子应用于氧化镍/钙钛矿界面。FHTM分子中咔唑基部分与C之间的电子转移引发的原位自掺杂效应,以及咔唑基团扩展的π共轭部分,显著提高了FHTM的空穴迁移率。再加上优化的能级排列和增强的界面相互作用,FHTM显著增强了相应器件中的空穴提取和传输。此外,引入的FHTM有效地促进了钙钛矿的均匀成核,从而得到高质量的钙钛矿薄膜。这些综合改进使得基于FHTM的PSC的冠军效率达到25.58%(认证值:25.04%),显著超过了对照器件(20.91%)。此外,在持续的一个太阳光照下进行1000小时最大功率点跟踪后,未封装的器件保持了其初始效率的93%。这项研究突出了功能化富勒烯作为空穴传输材料的潜力,为其在PSC领域的应用开辟了新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验