Hangzhou Institute of Medicine, Chinese Academy of Sciences, 310022 Hangzhou, Zhejiang, China.
2nd Physics Institute, University of Stuttgart, D-70569 Stuttgart, Germany.
Sci Adv. 2024 Aug 16;10(33):eadn8903. doi: 10.1126/sciadv.adn8903.
Proteins self-assemble to function in living cells. They may execute essential tasks in the form of monomers, complexes, or supramolecular cages via oligomerization, achieving a sophisticated balance between structural topology and functional dynamics. The modularity and programmability make DNA origami unique in mimicking these key features. Here, we demonstrate three-dimensional reconfigurable DNA origami pincers (DOPs) that multitask on giant unilamellar vesicles (GUVs). By programmably adjusting their pinching angle, the DOPs can dynamically control the degree of GUV remodeling. When oligomerized on the GUV to form origami cages, the DOP units interact with one another and undergo reorganization, resulting in the capture, compartmentalization, and detachment of lipid fragments. This oligomerization process is accompanied with membrane disruptions, enabling the passage of cargo across the membrane. We envisage that interfacing synthetic cells with engineered, multifunctional DNA nanostructures may help to confer customized cellular properties, unleashing the potential of both fields.
蛋白质在活细胞中自我组装以发挥功能。它们可以通过寡聚化以单体、复合物或超分子笼的形式执行重要任务,在结构拓扑和功能动力学之间实现精细的平衡。DNA 折纸术的模块化和可编程性使其在模拟这些关键特征方面独具特色。在这里,我们展示了可在巨大的单层囊泡 (GUV) 上进行多功能操作的三维可重构 DNA 折纸夹 (DOP)。通过可编程地调整它们的夹合角度,DOP 可以动态控制 GUV 重塑的程度。当 DOP 单元在 GUV 上组装形成折纸笼时,它们相互作用并发生重组,从而捕获、分隔和脱离脂质片段。这个寡聚化过程伴随着膜的破坏,使货物能够穿过膜。我们设想,将合成细胞与工程化的多功能 DNA 纳米结构相连接,可能有助于赋予细胞定制的特性,释放这两个领域的潜力。
Sci Adv. 2024-8-16
2025-1
Autism Adulthood. 2025-5-28
Autism Adulthood. 2025-5-28
J Phys Chem B. 2024-5-16
Autism Adulthood. 2024-9-16
Chembiochem. 2024-10-16
Nat Nanotechnol. 2024-3
Nano Lett. 2023-8-9
Nat Rev Mater. 2023-2
Nat Commun. 2023-3-10
ACS Nano. 2022-12-27
Sci Adv. 2022-10-14
ACS Nano. 2022-10-25