Suppr超能文献

无泄漏的小分子通过微米长度 DNA 纳米通道的端到端传输。

Leakless end-to-end transport of small molecules through micron-length DNA nanochannels.

机构信息

Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.

Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.

出版信息

Sci Adv. 2022 Sep 9;8(36):eabq4834. doi: 10.1126/sciadv.abq4834. Epub 2022 Sep 7.

Abstract

Designed and engineered protein and DNA nanopores can be used to sense and characterize single molecules and control transmembrane transport of molecular species. However, designed biomolecular pores are less than 100 nm in length and are used primarily for transport across lipid membranes. Nanochannels that span longer distances could be used as conduits for molecules between nonadjacent compartments or cells. Here, we design micrometer-long, 7-nm-diameter DNA nanochannels that small molecules can traverse according to the laws of continuum diffusion. Binding DNA origami caps to channel ends eliminates transport and demonstrates that molecules diffuse from one channel end to the other rather than permeating through channel walls. These micrometer-length nanochannels can also grow, form interconnects, and interface with living cells. This work thus shows how to construct multifunctional, dynamic agents that control molecular transport, opening ways of studying intercellular signaling and modulating molecular transport between synthetic and living cells.

摘要

设计和工程化的蛋白质和 DNA 纳米孔可用于感测和表征单分子,并控制跨膜分子物种的转运。然而,设计的生物分子孔小于 100nm 长,主要用于穿过脂质膜的转运。跨越更长距离的纳米通道可作为非相邻隔室或细胞之间分子的通道。在这里,我们设计了长达数微米、直径为 7nm 的 DNA 纳米通道,小分子可以根据连续扩散定律穿过这些通道。将 DNA 折纸帽结合到通道末端可消除转运,并证明分子从一个通道末端扩散到另一个末端,而不是通过通道壁渗透。这些数微米长的纳米通道还可以生长、形成互连并与活细胞接口。这项工作展示了如何构建控制分子转运的多功能、动态试剂,为研究细胞间信号传递和调节合成细胞与活细胞之间的分子转运开辟了途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f606/9451144/7507f705135d/sciadv.abq4834-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验