Huang Yunyao, Zhang Leiyang, Ge Pingji, Tang Mingyang, Jing Ruiyi, Yang Yintang, Liu Gang, Shur Vladimir, Lu Shengguo, Ke Xiaoqin, Jin Li
Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
School of Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
ACS Appl Mater Interfaces. 2024 Aug 28;16(34):45166-45179. doi: 10.1021/acsami.4c09282. Epub 2024 Aug 16.
In the pursuit of eco-friendly alternatives for refrigeration technology, electrocaloric materials have emerged as promising candidates for efficient solid-state refrigeration due to their high efficiency and integrability. However, current advancements in electrocaloric effects (ECEs) are often constrained by high temperatures and elevated electric fields (-field), limiting practical applicability. Informed by phase-field simulation, this study introduces a (1-)Pb(YbNb)O-Pb(MgNb)O system, strategically engineered to incorporate highly ordered YN and disordered MN mixtures. The synergistic interplay between -field/temperature-induced polarization reorientation and cation shift initiates multiple ferroelectric-antiferroelectric-paraelectric phase transitions. Our results demonstrate that under a moderate -field of 50 kV cm, the = 0.22 composition achieves remarkable performance with a giant temperature change (Δ) of 3.48 K, a robust ECE strength (Δ/Δ) of 0.095 K cm kV, and a wide temperature span () of 38 °C. Notably, the disrupted lattice structure contributes to ultralow electrostrains below 0.008%, with an average electrostrictive coefficient of 0.007 m C. The significantly weakened electrostrictive activity favors enhancing the performance stability of subsequent devices. This work introduces an innovative strategy for developing robust electrocaloric materials, offering substantial Δ and low electrostrains, presenting promising advancements in ECE applications with an extended lifetime.
在寻求制冷技术的环保替代方案过程中,电热材料因其高效性和可集成性,已成为高效固态制冷的有潜力候选材料。然而,当前电热效应(ECEs)的进展常常受到高温和高电场的限制,制约了其实际应用。基于相场模拟,本研究引入了一种(1 - )Pb(YbNb)O - Pb(MgNb)O体系,经过精心设计,包含高度有序的YN和无序的MN混合物。电场/温度诱导的极化重新取向与阳离子迁移之间的协同相互作用引发了多个铁电 - 反铁电 - 顺电相变。我们的结果表明,在50 kV/cm的中等电场下, = 0.22的成分表现出色,具有3.48 K的巨大温度变化(Δ)、0.095 K cm/kV的强大ECE强度(Δ/Δ)以及38°C的宽温度跨度()。值得注意的是, disrupted晶格结构导致低于0.008%的超低电致应变,平均电致伸缩系数 为 = 0.007 m/C。显著减弱的电致伸缩活性有利于提高后续器件的性能稳定性。这项工作引入了一种开发强大电热材料的创新策略,提供了可观的Δ和低电致应变,在具有延长寿命的ECE应用中展现出有前景的进展。 (注:原文中存在一些未明确含义的符号,如“(YbNb)”“(MgNb)”“(1 - )”“ = ”等,翻译时保留原样。)