Farkas Eniko, Dóra Kovács Kinga, Szekacs Inna, Peter Beatrix, Lagzi István, Kitahata Hiroyuki, Suematsu Nobuhiko J, Horvath Robert
Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, 1121 Budapest, Hungary.
Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, 1121 Budapest, Hungary; Department of Biological Physics, Eötvös Loránd University, 1117 Budapest, Hungary.
J Colloid Interface Sci. 2025 Jan;677(Pt B):352-364. doi: 10.1016/j.jcis.2024.07.236. Epub 2024 Aug 8.
Self-driven actions, like motion, are fundamental characteristics of life. Today, intense research focuses on the kinetics of droplet motion. Quantifying macroscopic motion and exploring the underlying mechanisms are crucial in self-structuring and self-healing materials, advancements in soft robotics, innovations in self-cleaning environmental processes, and progress within the pharmaceutical industry. Usually, the driving forces inducing macroscopic motion act at the molecular scale, making their real-time and high-resolution investigation challenging. Label-free surface sensitive measurements with high lateral resolution could in situ measure both molecular-scale interactions and microscopic motion.
We employ surface-sensitive label-free sensors to investigate the kinetic changes in a self-assembled monolayer of the trimethyl(octadecyl)azanium chloride surfactant on a substrate surface during the self-propelled motion of nitrobenzene droplets. The adsorption-desorption of the surfactant at various concentrations, its removal due to the moving organic droplet, and rebuilding mechanisms at droplet-visited areas are all investigated with excellent time, spatial, and surface mass density resolution.
We discovered concentration dependent velocity fluctuations, estimated the adsorbed amount of surfactant molecules, and revealed multilayer coverage at high concentrations. The desorption rate of surfactant (18.4 s) during the microscopic motion of oil droplets was determined by in situ differentiating between droplet visited and non-visited areas.
自我驱动的行为,如运动,是生命的基本特征。如今,大量研究聚焦于液滴运动的动力学。在自组装和自修复材料、软机器人技术的进步、自清洁环境过程的创新以及制药行业的发展中,量化宏观运动并探索其潜在机制至关重要。通常,引发宏观运动的驱动力在分子尺度上起作用,这使得对其进行实时和高分辨率研究具有挑战性。具有高横向分辨率的无标记表面敏感测量能够原位测量分子尺度的相互作用和微观运动。
我们使用表面敏感的无标记传感器,研究在硝基苯液滴自推进运动过程中,氯化三甲基(十八烷基)铵表面活性剂在基底表面自组装单分子层的动力学变化。以出色的时间、空间和表面质量密度分辨率,研究了不同浓度下表面活性剂的吸附 - 解吸、因移动有机液滴导致的表面活性剂去除以及液滴接触区域的重建机制。
我们发现了浓度依赖性速度波动,估算了表面活性剂分子的吸附量,并揭示了高浓度下的多层覆盖情况。通过原位区分液滴接触区域和未接触区域,确定了油滴微观运动过程中表面活性剂的解吸速率(18.4秒)。