Mechanical Engineering Department, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia.
Mechanical Engineering Department, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia.
Ecotoxicol Environ Saf. 2024 Sep 15;283:116856. doi: 10.1016/j.ecoenv.2024.116856. Epub 2024 Aug 15.
Air pollution in industrial environments, particularly in the chrome plating process, poses significant health risks to workers due to high concentrations of hazardous pollutants. Exposure to substances like hexavalent chromium, volatile organic compounds (VOCs), and particulate matter can lead to severe health issues, including respiratory problems and lung cancer. Continuous monitoring and timely intervention are crucial to mitigate these risks. Traditional air quality monitoring methods often lack real-time data analysis and predictive capabilities, limiting their effectiveness in addressing pollution hazards proactively. This paper introduces a real-time air pollution monitoring and forecasting system specifically designed for the chrome plating industry. The system, supported by Internet of Things (IoT) sensors and AI approaches, detects a wide range of air pollutants, including NH, CO, NO, CH, CO, SO, O, PM2.5, and PM10, and provides real-time data on pollutant concentration levels. Data collected by the sensors are processed using LSTM, Random Forest, and Linear Regression models to predict pollution levels. The LSTM model achieved a coefficient of variation (R²) of 99 % and a mean absolute percentage error (MAE) of 0.33 for temperature and humidity forecasting. For PM2.5, the Random Forest model outperformed others, achieving an R² of 84 % and an MAE of 10.11. The system activates factory exhaust fans to circulate air when high pollution levels are predicted to occur in the next hours, allowing for proactive measures to improve air quality before issues arise. This innovative approach demonstrates significant advancements in industrial environmental monitoring, enabling dynamic responses to pollution and improving air quality in industrial settings.
工业环境中的空气污染,特别是在镀铬过程中,由于危险污染物的高浓度,对工人的健康构成重大威胁。接触六价铬、挥发性有机化合物 (VOC) 和颗粒物等物质会导致严重的健康问题,包括呼吸道问题和肺癌。持续监测和及时干预对于减轻这些风险至关重要。传统的空气质量监测方法通常缺乏实时数据分析和预测能力,限制了其在主动应对污染危害方面的有效性。本文介绍了一种专为镀铬行业设计的实时空气污染监测和预测系统。该系统由物联网 (IoT) 传感器和人工智能方法支持,可检测多种空气污染物,包括 NH、CO、NO、CH、CO、SO、O、PM2.5 和 PM10,并提供污染物浓度的实时数据。传感器收集的数据通过 LSTM、随机森林和线性回归模型进行处理,以预测污染水平。LSTM 模型在预测温度和湿度方面取得了 99%的变异系数 (R²) 和 0.33 的平均绝对百分比误差 (MAE)。对于 PM2.5,随机森林模型表现优于其他模型,取得了 84%的 R² 和 10.11 的 MAE。当预测到下几个小时内污染水平较高时,系统会激活工厂排风扇循环空气,以便在出现问题之前采取主动措施改善空气质量。这种创新方法展示了工业环境监测的重大进展,使我们能够对污染做出动态响应,并改善工业环境中的空气质量。