Martinez-Canton Miriam, Galvan-Alvarez Victor, Martin-Rincon Marcos, Calbet Jose A L, Gallego-Selles Angel
Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain.
Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain; Department of Physical Performance, The Norwegian School of Sport Sciences, Postboks, 4014 Ulleval Stadion, 0806, Oslo, Norway; School of Kinesiology, Faculty of Education, The University of British Columbia, Vancouver, BC, Canada.
Free Radic Biol Med. 2024 Nov 1;224:168-181. doi: 10.1016/j.freeradbiomed.2024.08.011. Epub 2024 Aug 14.
Since the discovery of the nuclear factor erythroid-derived 2-like 2 (Nrf2) transcription factor thirty years ago, it has been shown that it regulates more than 250 genes involved in a multitude of biological processes, including redox balance, mitochondrial biogenesis, metabolism, detoxification, cytoprotection, inflammation, immunity, autophagy, cell differentiation, and xenobiotic metabolism. In skeletal muscle, Nrf2 signalling is primarily activated in response to perturbation of redox balance by reactive oxygen species or electrophiles. Initial investigations into human skeletal muscle Nrf2 responses to exercise, dating back roughly a decade, have consistently indicated that exercise-induced ROS production stimulates Nrf2 signalling. Notably, recent studies employing Nrf2 knockout mice have revealed impaired skeletal muscle contractile function characterised by reduced force output and increased fatigue susceptibility compared to wild-type counterparts. These deficiencies partially stem from diminished basal mitochondrial respiratory capacity and an impaired capacity to upregulate specific mitochondrial proteins in response to training, findings corroborated by inducible muscle-specific Nrf2 knockout models. In humans, baseline Nrf2 expression in skeletal muscle correlates with maximal oxygen uptake and high-intensity exercise performance. This manuscript delves into the mechanisms underpinning Nrf2 signalling in response to acute exercise in human skeletal muscle, highlighting the involvement of ROS, antioxidants and Keap1/Nrf2 signalling in exercise performance. Furthermore, it explores Nrf2's role in mediating adaptations to chronic exercise and its impact on overall exercise performance. Additionally, the influence of diet and certain supplements on basal Nrf2 expression and its role in modulating acute and chronic exercise responses are briefly addressed.
自30年前发现核因子红细胞衍生2样2(Nrf2)转录因子以来,已表明它可调节250多个参与多种生物过程的基因,这些过程包括氧化还原平衡、线粒体生物发生、代谢、解毒、细胞保护、炎症、免疫、自噬、细胞分化和外源性物质代谢。在骨骼肌中,Nrf2信号主要是在活性氧或亲电试剂扰乱氧化还原平衡时被激活。大约十年前对人类骨骼肌Nrf2对运动反应的初步研究一直表明,运动诱导的ROS产生会刺激Nrf2信号。值得注意的是,最近使用Nrf2基因敲除小鼠的研究显示,与野生型小鼠相比,骨骼肌收缩功能受损,表现为力量输出降低和疲劳易感性增加。这些缺陷部分源于基础线粒体呼吸能力的降低以及对训练上调特定线粒体蛋白的能力受损,诱导型肌肉特异性Nrf2基因敲除模型证实了这一发现。在人类中,骨骼肌中的基线Nrf2表达与最大摄氧量和高强度运动表现相关。本手稿深入探讨了人类骨骼肌对急性运动反应中Nrf2信号的潜在机制,强调了ROS、抗氧化剂和Keap1/Nrf2信号在运动表现中的作用。此外,它还探讨了Nrf2在介导对慢性运动的适应性及其对整体运动表现的影响方面的作用。此外,还简要讨论了饮食和某些补充剂对基础Nrf2表达的影响及其在调节急性和慢性运动反应中的作用。