Vaiyapuri Thavavel, Aldosari Huda, Alharbi Ghada, Bouteraa Yassine, Joshi Gyanendra Prasad, Cho Woong
Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia.
Department of Artificial Intelligence and Data Science, College of Computer Science and Engineering, Taibah University, Madinah, Saudi Arabia.
Sci Rep. 2024 Aug 16;14(1):18967. doi: 10.1038/s41598-024-69806-5.
Recent sensor, communication, and computing technological advancements facilitate smart grid use. The heavy reliance on developed data and communication technology increases the exposure of smart grids to cyberattacks. Existing mitigation in the electricity grid focuses on protecting primary or redundant measurements. These approaches make certain assumptions regarding false data injection (FDI) attacks, which are inadequate and restrictive to cope with cyberattacks. The reliance on communication technology has emphasized the exposure of power systems to FDI assaults that can bypass the current bad data detection (BDD) mechanism. The current study on unobservable FDI attacks (FDIA) reveals the severe threat of secured system operation because these attacks can avoid the BDD method. Thus, a Data-driven learning-based approach helps detect unobservable FDIAs in distribution systems to mitigate these risks. This study presents a new Hybrid Metaheuristics-based Dimensionality Reduction with Deep Learning for FDIA (HMDR-DLFDIA) Detection technique for Enhanced Network Security. The primary objective of the HMDR-DLFDIA technique is to recognize and classify FDIA attacks in the distribution systems. In the HMDR-DLFDIA technique, the min-max scalar is primarily used for the data normalization process. Besides, a hybrid Harris Hawks optimizer with a sine cosine algorithm (hybrid HHO-SCA) is applied for feature selection. For FDIA detection, the HMDR-DLFDIA technique utilizes the stacked autoencoder (SAE) method. To improve the detection outcomes of the SAE model, the gazelle optimization algorithm (GOA) is exploited. A complete set of experiments was organized to highlight the supremacy of the HMDR-DLFDIA method. The comprehensive result analysis stated that the HMDR-DLFDIA technique performed better than existing DL models.
近期传感器、通信和计算技术的进步推动了智能电网的应用。对发达的数据和通信技术的严重依赖增加了智能电网遭受网络攻击的风险。电网现有的缓解措施侧重于保护主要或冗余测量。这些方法对虚假数据注入(FDI)攻击做了某些假设,这些假设在应对网络攻击时是不充分且有局限性的。对通信技术的依赖凸显了电力系统易受FDI攻击的影响,这些攻击可以绕过当前的不良数据检测(BDD)机制。当前对不可观测FDI攻击(FDIA)的研究揭示了安全系统运行面临的严重威胁,因为这些攻击可以避开BDD方法。因此,一种基于数据驱动学习的方法有助于检测配电系统中的不可观测FDIA,以降低这些风险。本研究提出了一种新的基于混合元启发式算法的降维与深度学习相结合的FDIA(HMDR-DLFDIA)检测技术,以增强网络安全性。HMDR-DLFDIA技术的主要目标是识别和分类配电系统中的FDIA攻击。在HMDR-DLFDIA技术中,最小-最大标量主要用于数据归一化过程。此外,一种结合正弦余弦算法的混合哈里斯鹰优化器(混合HHO-SCA)被应用于特征选择。对于FDIA检测,HMDR-DLFDIA技术利用堆叠自动编码器(SAE)方法。为了提高SAE模型的检测结果,采用了瞪羚优化算法(GOA)。组织了一系列完整的实验来突出HMDR-DLFDIA方法的优越性。综合结果分析表明,HMDR-DLFDIA技术的性能优于现有的深度学习模型。