Faculty of Business and Economics, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.
Department of Economics, Faculty of Management Science, Sardar Bahadur Khan Womes University Balochistan, Quetta, 08763, Pakistan.
BMC Public Health. 2024 Aug 16;24(1):2229. doi: 10.1186/s12889-024-19682-5.
In developing countries, the death probability of a child and mother is more significant than in developed countries; these inequalities in health outcomes are unfair. The present study encompasses a spatial analysis of maternal and child mortalities in Pakistan. The study aims to estimate the District Mortality Index (DMI), measure the inequality ratio and slope, and ascertain the spatial impact of numerous factors on DMI scores across Pakistani districts.
This study used micro-level household datasets from multiple indicator cluster surveys (MICS) to estimate the DMI. To find out how different the DMI scores were, the inequality ratio and slope were used. This study further utilized spatial autocorrelation tests to determine the magnitude and location of the spatial dependence of the clusters with high and low mortality rates. The Geographically Weighted Regression (GWR) model was also applied to examine the spatial impact of socioeconomic, environmental, health, and housing attributes on DMI.
The inequality ratio for DMI showed that the upper decile districts are 16 times more prone to mortalities than districts in the lower decile, and the districts of Baluchistan depicted extreme spatial heterogeneity in terms of DMI. The findings of the Local Indicator of Spatial Association (LISA) and Moran's test confirmed spatial homogeneity in all mortalities among the districts in Pakistan. The H-H clusters of maternal mortality and DMI were in Baluchistan, and the H-H clusters of child mortality were seen in Punjab. The results of GWR showed that the wealth index quintile has a significant spatial impact on DMI; however, improved sanitation, handwashing practices, and antenatal care adversely influenced DMI scores.
The findings reveal a significant disparity in DMI and spatial relationships among all mortalities in Pakistan's districts. Additionally, socioeconomic, environmental, health, and housing variables have an impact on DMI. Notably, spatial proximity among individuals who are at risk of death occurs in areas with elevated mortality rates. Policymakers may mitigate these mortalities by focusing on vulnerable zones and implementing measures such as raising public awareness, enhancing healthcare services, and improving access to clean drinking water and sanitation facilities.
在发展中国家,儿童和母亲的死亡率比发达国家更高;这些健康结果的不平等是不公平的。本研究对巴基斯坦的母婴死亡率进行了空间分析。本研究旨在估计地区死亡率指数(DMI),衡量不平等比例和斜率,并确定众多因素对巴基斯坦各地区 DMI 分数的空间影响。
本研究使用多指标类集调查(MICS)的微观家庭数据集来估计 DMI。为了了解 DMI 分数的差异程度,使用了不平等比例和斜率。本研究还利用空间自相关检验来确定具有高死亡率和低死亡率的集群的空间依赖程度的大小和位置。还应用地理加权回归(GWR)模型来检查社会经济、环境、健康和住房属性对 DMI 的空间影响。
DMI 的不平等比例表明,上十分位数地区的死亡率是下十分位数地区的 16 倍,俾路支省的 DMI 表现出极端的空间异质性。局部空间关联指标(LISA)和 Moran 检验的结果证实了巴基斯坦各地区所有死亡率的空间同质性。孕产妇死亡率和 DMI 的 H-H 集群位于俾路支省,儿童死亡率的 H-H 集群位于旁遮普省。GWR 的结果表明,财富指数五分位数对 DMI 有显著的空间影响;然而,改善卫生条件、洗手习惯和产前保健会对 DMI 分数产生不利影响。
研究结果表明,巴基斯坦各地区的 DMI 存在显著差异,且所有死亡率之间存在空间关系。此外,社会经济、环境、健康和住房变量对 DMI 有影响。值得注意的是,处于死亡风险中的个体之间的空间接近性发生在死亡率较高的地区。决策者可以通过关注脆弱地区并采取措施来减轻这些死亡率,例如提高公众意识、加强医疗保健服务以及改善清洁饮用水和卫生设施的获取。