State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
Department of Prosthodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, P. R. China.
Small. 2024 Nov;20(47):e2404641. doi: 10.1002/smll.202404641. Epub 2024 Aug 17.
Nucleic acid nanotechnology has become a promising strategy for disease diagnosis and treatment, owing to remarkable programmability, precision, and biocompatibility. However, current biosensing and biotherapy approaches by nucleic acids exhibit limitations in sensitivity, specificity, versatility, and real-time monitoring. DNA amplification reactions present an advantageous strategy to enhance the performance of biosensing and biotherapy platforms. Non-enzymatic DNA amplification reaction (NEDAR), such as hybridization chain reaction and catalytic hairpin assembly, operate via strand displacement. NEDAR presents distinct advantages over traditional enzymatic DNA amplification reactions, including simplified procedures, milder reaction conditions, higher specificity, enhanced controllability, and excellent versatility. Consequently, research focusing on NEDAR-based biosensing and biotherapy has garnered significant attention. NEDAR demonstrates high efficacy in detecting multiple types of biomarkers, including nucleic acids, small molecules, and proteins, with high sensitivity and specificity, enabling the parallel detection of multiple targets. Besides, NEDAR can strengthen drug therapy, cellular behavior control, and cell encapsulation. Moreover, NEDAR holds promise for constructing assembled diagnosis-treatment nanoplatforms in the forms of pure DNA nanostructures and hybrid nanomaterials, which offer utility in disease monitoring and precise treatment. Thus, this paper aims to comprehensively elucidate the reaction mechanism of NEDAR and review the substantial advancements in NEDAR-based diagnosis and treatment over the past five years, encompassing NEDAR-based design strategies, applications, and prospects.
核酸纳米技术由于其显著的可编程性、精确性和生物相容性,已成为疾病诊断和治疗的一种有前途的策略。然而,当前基于核酸的生物传感和生物治疗方法在灵敏度、特异性、多功能性和实时监测方面存在局限性。核酸的 DNA 扩增反应提供了一种增强生物传感和生物治疗平台性能的优势策略。非酶 DNA 扩增反应(NEDAR),如杂交链式反应和催化发夹组装,通过链置换进行操作。与传统的酶促 DNA 扩增反应相比,NEDAR 具有明显的优势,包括简化的程序、更温和的反应条件、更高的特异性、增强的可控性和出色的多功能性。因此,基于 NEDAR 的生物传感和生物治疗的研究引起了广泛关注。NEDAR 在检测多种类型的生物标志物方面具有高效性,包括核酸、小分子和蛋白质,具有高灵敏度和特异性,能够并行检测多个目标。此外,NEDAR 可以增强药物治疗、细胞行为控制和细胞封装。此外,NEDAR 有望构建以纯 DNA 纳米结构和杂化纳米材料形式的组装诊断-治疗纳米平台,在疾病监测和精确治疗方面具有应用价值。因此,本文旨在全面阐明 NEDAR 的反应机制,并综述过去五年中基于 NEDAR 的诊断和治疗方面的重大进展,包括基于 NEDAR 的设计策略、应用和前景。