Suppr超能文献

双元素取代诱导集成缺陷结构以抑制富锂锰基正极的电压衰减和容量衰减

Dual-element substitution induced integrated defect structure to suppress voltage decay and capacity fading of Li-rich Mn-based cathode.

作者信息

Zhang Zhigui, Kou Pengzu, Chen Yu, Zheng Runguo, Wang Zhiyuan, Sun Hongyu, Liu Yanguo, Wang Dan

机构信息

School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.

School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China; Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, PR China.

出版信息

J Colloid Interface Sci. 2025 Jan;677(Pt B):377-386. doi: 10.1016/j.jcis.2024.08.078. Epub 2024 Aug 13.

Abstract

Li-rich manganese-based oxide (LRMO) is considered one of the most promising cathode materials for next-generation lithium-ion batteries due to its high energy density. However, many issues need to be addressed before its large-scale commercialization, including significant voltage decay and capacity fading. Herein, a Sn/Na co-doping induced integrated defect structure (oxygen vacancies, stacking faults, and surface spinel phase) strategy is proposed to suppress the voltage decay and enhance the cycling performance of LRMO. The integrated surface defect structures have significantly favorable effects on the LRMO, where the oxygen vacancies remove surface labile oxygen and suppress surface oxygen release, the induced stacking faults alleviate the stress accumulation during cycling, the surface spinel phase promotes the Li diffusion and prevents the outward migration of cations, and the co-doped Sn/Na stabilize the layered structure. As a result, the modified sample NaSnO-1 % (NSO-1) achieves excellent cycling performance (capacity of 207 mAh/g and capacity retention of 96.71 % after 100 cycles at 0.5C) and a smaller voltage decay (less than 1.5 mV per cycle) compared with the unmodified LRMO. This work provides a new valuable strategy to suppress capacity fading and voltage decay of LRMO through dual-element substitution induced surface defect engineering.

摘要

富锂锰基氧化物(LRMO)因其高能量密度而被认为是下一代锂离子电池最有前景的正极材料之一。然而,在其大规模商业化之前,仍有许多问题需要解决,包括显著的电压衰减和容量衰减。在此,提出了一种锡/钠共掺杂诱导的集成缺陷结构(氧空位、堆垛层错和表面尖晶石相)策略,以抑制电压衰减并提高LRMO的循环性能。集成的表面缺陷结构对LRMO具有显著的有利影响,其中氧空位去除表面不稳定的氧并抑制表面氧释放,诱导的堆垛层错减轻循环过程中的应力积累,表面尖晶石相促进锂扩散并防止阳离子向外迁移,共掺杂的锡/钠稳定层状结构。结果,与未改性的LRMO相比,改性样品NaSnO-1%(NSO-1)具有优异的循环性能(在0.5C下100次循环后容量为207 mAh/g,容量保持率为96.71%)和较小的电压衰减(每循环小于1.5 mV)。这项工作提供了一种新的有价值的策略,通过双元素取代诱导的表面缺陷工程来抑制LRMO的容量衰减和电压衰减。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验