Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan.
Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan.
Biochim Biophys Acta Bioenerg. 2024 Nov 1;1865(4):149503. doi: 10.1016/j.bbabio.2024.149503. Epub 2024 Aug 15.
Spectral variations of light-harvesting (LH) proteins of purple photosynthetic bacteria provide insight into the molecular mechanisms underlying spectral tuning of circular bacteriochlorophyll (BChl) arrays, which play crucial roles in photoenergy conversion in these organisms. Here we investigate spectral changes of the Q band of B850 BChl a in LH2 protein from purple sulfur bacterium Thermochromatium tepidum (tepidum-LH2) by detergents and Ca. The tepidum-LH2 solubilized with lauryl dimethylamine N-oxide and n-octyl-β-D-glucoside (LH2 and LH2, respectively) exhibited blue-shift of the B850 Q band with hypochromism compared with the tepidum-LH2 solubilized with n-dodecyl-β-D-maltoside (LH2), resulting in the LH3-like spectral features. Resonance Raman spectroscopy indicated that this blue-shift was ascribable to the loss of hydrogen-bonding between the C3-acetyl group in B850 BChl a and the LH2 polypeptides. Ca produced red-shift of the B850 Q band in LH2 by forming hydrogen-bond for the C3-acetyl group in B850 BChl a, probably due to a change in the microenvironmental structure around B850. Ca-induced red-shift was also observed in LH2 although the B850 acetyl group is still free from hydrogen-bonding. Therefore, the Ca-induced B850 red-shift in LH2 would originate from an electrostatic effect of Ca. The current results suggest that the B850 Q band in tepidum-LH2 is primarily tuned by two mechanisms, namely the hydrogen-bonding of the B850 acetyl group and the electrostatic effect.
光合细菌的捕光(LH)蛋白的光谱变化为研究圆型细菌叶绿素(BChl)阵列的光谱调谐的分子机制提供了线索,该机制在这些生物体中的光能转换中起着至关重要的作用。在这里,我们通过去污剂和 Ca 研究了来自紫色硫细菌 Thermochromatium tepidum(tepidum-LH2)的 LH2 蛋白中 B850 BChl a 的 Q 带的光谱变化。与用正十二烷基-β-D-麦芽糖苷(LH2)溶解的 tepidum-LH2 相比,用十二烷基二甲基氧化胺和正辛基-β-D-吡喃葡萄糖苷(LH2 和 LH2,分别)溶解的 tepidum-LH2 表现出 B850 Q 带的蓝移和消光,导致 LH3 样的光谱特征。共振拉曼光谱表明,这种蓝移归因于 B850 BChl a 中的 C3-乙酰基与 LH2 多肽之间氢键的丧失。Ca 通过形成 B850 BChl a 中的 C3-乙酰基的氢键,使 LH2 中的 B850 Q 带红移,这可能是由于 B850 周围微环境结构的变化。尽管 B850 乙酰基仍无氢键,但在 LH2 中也观察到 Ca 诱导的 B850 红移。因此,Ca 诱导的 LH2 中的 B850 红移源于 Ca 的静电效应。目前的结果表明,tepidum-LH2 中的 B850 Q 带主要通过两种机制进行调谐,即 B850 乙酰基的氢键和静电效应。