Centre for Developmental Neurobiology, King's College London, London, UK.
Machine Learning Group, Centrum Wiskunde & Informatica, Amsterdam, the Netherlands.
Nat Commun. 2024 Aug 17;15(1):7088. doi: 10.1038/s41467-024-51368-9.
Task-switching is a fundamental cognitive ability that allows animals to update their knowledge of current rules or contexts. Detecting discrepancies between predicted and observed events is essential for this process. However, little is known about how the brain computes cognitive prediction-errors and whether neural prediction-error signals are causally related to task-switching behaviours. Here we trained mice to use a prediction-error to switch, in a single trial, between responding to the same stimuli using two distinct rules. Optogenetic silencing and un-silencing, together with widefield and two-photon calcium imaging revealed that the anterior cingulate cortex (ACC) was specifically required for this rapid task-switching, but only when it exhibited neural prediction-error signals. These prediction-error signals were projection-target dependent and were larger preceding successful behavioural transitions. An all-optical approach revealed a disinhibitory interneuron circuit required for successful prediction-error computation. These results reveal a circuit mechanism for computing prediction-errors and transitioning between distinct cognitive states.
任务转换是一种基本的认知能力,使动物能够更新对当前规则或情境的了解。检测预测事件和观察事件之间的差异对于这个过程至关重要。然而,目前还不清楚大脑如何计算认知预测误差,以及神经预测误差信号是否与任务转换行为有因果关系。在这里,我们训练老鼠在单次试验中使用预测误差,根据两个不同的规则,用同一种刺激来切换反应。光遗传学沉默和去沉默,以及宽场和双光子钙成像显示,前扣带皮层(ACC)对于这种快速的任务转换是必需的,但只有当它表现出神经预测误差信号时才是必需的。这些预测误差信号与投射目标有关,在成功的行为转换之前更大。全光学方法揭示了成功预测误差计算所需的抑制性中间神经元回路。这些结果揭示了计算预测误差和在不同认知状态之间转换的电路机制。