Gao Bing, Huang Ying, Gao Yan, Wang Jiaming, Zong Meng, Ma Xiaofang, Liu Chenbo
MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
J Colloid Interface Sci. 2025 Jan;677(Pt B):560-570. doi: 10.1016/j.jcis.2024.08.070. Epub 2024 Aug 13.
The unique design of the core-shell heterostructure is significant for obtaining electrode materials with excellent electrochemical properties. In this paper, porous carbon nanofibers (NPC@PPZ) embedded with N-doped porous carbon nanoparticles are used to construct flexible electrodes (NPC@PPZ@BiO). Zeolite imidazole skeleton (ZIF)-8 and poly(methyl methacrylate) (PMMA) derived porous carbon fibers and BiO nanosheets, were utilized as the porous core and multilayer shell, respectively. The unique core and shell result in abundant pores and channels for fast ion transport and storage, high specific surface area, and additional electroactive sites. This perfect structural design enables the NPC@PPZ@BiO composite electrode to have excellent electrochemical performance. The results show that this electrode can obtain a high specific capacitance of 697 F g at a current density of 1 A g and a stable cycling performance at a high current density of 5 A g. The strategy developed in this study provides a new approach for the design and fabrication of flexible supercapacitors by electrostatic spinning combined with hierarchical porous structures.
核壳异质结构的独特设计对于获得具有优异电化学性能的电极材料具有重要意义。本文采用嵌入N掺杂多孔碳纳米颗粒的多孔碳纳米纤维(NPC@PPZ)来构建柔性电极(NPC@PPZ@BiO)。分别以沸石咪唑骨架(ZIF)-8和聚甲基丙烯酸甲酯(PMMA)衍生的多孔碳纤维以及BiO纳米片作为多孔核和多层壳。独特的核壳结构产生了丰富的孔隙和通道,有利于快速离子传输和存储、高比表面积以及额外的电活性位点。这种完美的结构设计使NPC@PPZ@BiO复合电极具有优异的电化学性能。结果表明,该电极在1 A g的电流密度下可获得697 F g的高比电容,在5 A g的高电流密度下具有稳定的循环性能。本研究中开发的策略为通过静电纺丝结合分级多孔结构设计和制造柔性超级电容器提供了一种新方法。