Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia.
Bioresource and Biorefinery Group, Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
Int J Biol Macromol. 2024 Oct;278(Pt 3):134816. doi: 10.1016/j.ijbiomac.2024.134816. Epub 2024 Aug 16.
The hydrogel regeneration process, involving various cellulose types, results in distinct chemical bonding patterns. Even minor variations in chemical interactions among polymers during regeneration significantly impact properties like hydrogel-forming ability, hydrophilicity, and swelling capacity. This study focuses on regenerating a superabsorbent hydrogel from the interplay of native empty fruit bunch cellulose (EFBC), sodium carboxymethyl cellulose (NaCMC), and hydroxyethyl cellulose (HEC) using epichlorohydrin (ECH) as a crosslinker. The hydrogel was formed from dissolved EFBC solutions in an aqueous NaOH/urea solvent, supplemented with different NaCMC and HEC weight ratios, and ECH chemically assisted the crosslinking process. EFBC provides the hydrogel's supporting skeletal structure, while NaCMC and HEC play vital roles in enhancing forming ability and its physical and mechanical properties through diverse chemical interactions based on their electrovalent properties. Notably, NaCMC imparts hydrophilicity, while HEC indirectly improves superabsorbent properties through the enhancement of the elastic network's retraction force. Hydrogels combining NaCMC and HEC show a remarkable water absorption capacity exceeding 30,000 %, surpassing those regenerated solely with EFBC and NaCMC. The highest swelling, over 130,000 %, is achieved with 0.75 % NaCMC and 0.25 % HEC. Regarding thermal stability, hydrogels with a higher NaCMC proportion outperform those with increased HEC content. The study highlights the critical role of tailored chemical interactions in successfully regenerating an improved superabsorbent hydrogel with enhanced water absorption properties.
水凝胶的再生过程涉及到各种纤维素类型,会产生不同的化学键合模式。即使聚合物在再生过程中化学相互作用的微小变化,也会显著影响水凝胶的形成能力、亲水性和溶胀能力等性能。本研究专注于使用表氯醇 (ECH) 作为交联剂,从天然空果串纤维素 (EFBC)、羧甲基纤维素钠 (NaCMC) 和羟乙基纤维素 (HEC) 的相互作用中再生一种超吸水性水凝胶。水凝胶是由溶解在含有不同 NaCMC 和 HEC 重量比的 NaOH/尿素水溶液中的 EFBC 溶液形成的,ECH 化学辅助了交联过程。EFBC 为水凝胶提供了支撑骨架结构,而 NaCMC 和 HEC 通过基于其电价性质的各种化学相互作用,在增强形成能力及其物理和机械性能方面发挥着重要作用。值得注意的是,NaCMC 赋予水凝胶亲水性,而 HEC 通过增强弹性网络的回缩力间接提高了超吸水性。同时含有 NaCMC 和 HEC 的水凝胶表现出超过 30000%的惊人吸水能力,超过了仅由 EFBC 和 NaCMC 再生的水凝胶。在 0.75% NaCMC 和 0.25% HEC 条件下,水凝胶的溶胀率超过 130000%。就热稳定性而言,具有较高 NaCMC 比例的水凝胶优于具有增加 HEC 含量的水凝胶。该研究强调了精心设计的化学相互作用在成功再生具有增强吸水性能的改良超吸水性水凝胶中的关键作用。