Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. Liège, INRAE, Junia, UMR-T 1158, BioEcoAgro, F-62300 Lens, France; Gembloux Agro-Bio Tech, Department of Food Science and Formulation, University of Liège, B-5030 Gembloux, Belgium; Cosucra Groupe Warcoing S.A., B-7040 Warcoing, Belgium.
Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. Liège, INRAE, Junia, UMR-T 1158, BioEcoAgro, F-62300 Lens, France.
Int J Biol Macromol. 2024 Oct;278(Pt 2):134818. doi: 10.1016/j.ijbiomac.2024.134818. Epub 2024 Aug 17.
This study explored the relationship between pea protein foaming properties and their structure and physicochemical properties under neutral and acidic pH. Results showed that pH modified the zeta potential, particle size and surface tension due to electrostatic changes. FT-MIR and fluorescence spectra revealed pH-induced conformational changes, exposing hydrophobic groups and increasing sulfhydryl content, promoting protein aggregation. At pH 3, the highest foaming capacity (1.273) and lowest foam expansion (6.967) were observed, associated with increased surface hydrophobicity and net charges, ideal for creating light foams with high liquid incorporation for acidic beverages or fruit-based mousses. Pea protein isolate generated stable foams with foam volume stability between 86.662 % and 94.255 %. Although neutral pH conditions showed the highest foam volume stability, their air bubbles increased in size and transitioned from spherical to polyhedral shape, suitable for visual-centric applications, like cappuccino foam and beer-head retention. Foams at pH 5 exhibited the smallest bubbles and maintained their spherical shape, enhancing drainage resistance, beneficial for whipped toppings. Strong correlations (Pearson correlation coefficient higher than 0.600) were noted between the structure, surface and foaming properties, providing crucial insights into optimizing pea protein functionality across various pH conditions, enabling the development of plant-based foamed products with tailored properties.
本研究探讨了豌豆蛋白在中性和酸性 pH 下的起泡性质与其结构和理化性质之间的关系。结果表明,pH 通过静电变化改变了 Zeta 电位、粒径和表面张力。傅里叶变换-衰减全反射红外光谱(FT-MIR)和荧光光谱揭示了 pH 诱导的构象变化,暴露出疏水性基团并增加巯基含量,促进了蛋白质聚集。在 pH 3 时,观察到最高的起泡能力(1.273)和最低的泡沫膨胀(6.967),这与表面疏水性和净电荷的增加有关,有利于为酸性饮料或水果慕斯创造具有高液体结合力的轻质泡沫。豌豆蛋白分离物生成的泡沫具有 86.662%至 94.255%之间的泡沫体积稳定性。虽然中性 pH 条件下的泡沫体积稳定性最高,但它们的气泡会增大,并从球形转变为多面体形,适用于以视觉为中心的应用,如卡布奇诺泡沫和啤酒头保留。在 pH 5 下的泡沫具有最小的气泡,并保持其球形,增强了排水阻力,有利于搅打奶油。结构、表面和起泡性能之间存在很强的相关性(Pearson 相关系数高于 0.600),这为优化豌豆蛋白在各种 pH 条件下的功能提供了重要的见解,使具有定制特性的植物基泡沫产品的开发成为可能。