Suppr超能文献

用于超级电容器的3D打印基于MXene的电极。

3D Printing MXene-Based Electrodes for Supercapacitors.

作者信息

Jiang Xudong, Bai Juan, Wijerathne Binodhya, Zhou Qianqin, Zhang Fan, Liao Ting, Sun Ziqi

机构信息

School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia.

Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia.

出版信息

Chem Asian J. 2024 Dec 2;19(23):e202400568. doi: 10.1002/asia.202400568. Epub 2024 Oct 18.

Abstract

3D printing, as an advanced and promising strategy for processing electrode for energy storage devices, such as supercapacitors and batteries, has garnered considerable interest in recent decades. The interest in 3D printed electrodes stems from its exceptional performance and manufacturing features, including customized sizes and shapes and the layer-by-layer processing principle, etc., especially integrating with MXene which allows the manufacturing of electrodes from different raw materials and possessing desired electrochemical properties. Herculean challenges, such as material compatibility of the printing inks, nondurable interfacial or bulk mechanical strength of the printed electrodes, and sometimes the low capacitance, lead to inferior electrochemical performance and hinder the practical applications of this promising technology. In this review, we firstly summarize the representative 3D printing methods, then, review the MXene-based 3D printing electrodes made from different materials, and last, provide electrochemical performance of 3D printing MXene-based electrodes for supercapacitors. Furthermore, based on a summary on the recent progress, an outlook on these promising electrodes for sustainable energy devices is provided. We anticipate that this review could provide some insights into overcoming the challenges and achieving more remarkable electrochemical performance of 3D printing supercapacitor electrodes and offer perspectives in the future for emerging energy devices.

摘要

作为一种用于制造超级电容器和电池等储能设备电极的先进且有前景的策略,3D打印在近几十年来引起了广泛关注。对3D打印电极的兴趣源于其卓越的性能和制造特性,包括定制的尺寸和形状以及逐层加工原理等,特别是与MXene集成后,能够使用不同原材料制造电极并具备所需的电化学性能。然而,诸如打印油墨的材料兼容性、打印电极的界面或整体机械强度不持久,以及有时电容较低等艰巨挑战,导致电化学性能不佳,阻碍了这项有前景技术的实际应用。在本综述中,我们首先总结了具有代表性的3D打印方法,接着,回顾了由不同材料制成的基于MXene的3D打印电极,最后,给出了用于超级电容器的3D打印MXene基电极的电化学性能。此外,基于对近期进展的总结,对这些用于可持续能源设备的有前景电极进行了展望。我们预计,本综述可为克服挑战、实现3D打印超级电容器电极更卓越的电化学性能提供一些见解,并为新兴能源设备的未来发展提供展望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e87/11613818/996f60e7bcb6/ASIA-19-e202400568-g010.jpg

相似文献

1
3D Printing MXene-Based Electrodes for Supercapacitors.
Chem Asian J. 2024 Dec 2;19(23):e202400568. doi: 10.1002/asia.202400568. Epub 2024 Oct 18.
3
3D Printing of Additive-Free 2D TiCT (MXene) Ink for Fabrication of Micro-Supercapacitors with Ultra-High Energy Densities.
ACS Nano. 2020 Jan 28;14(1):640-650. doi: 10.1021/acsnano.9b07325. Epub 2020 Jan 8.
4
Evolution of 3D Printing Methods and Materials for Electrochemical Energy Storage.
Adv Mater. 2020 Jul;32(29):e2000556. doi: 10.1002/adma.202000556. Epub 2020 Jun 8.
5
3D Printing of Freestanding MXene Architectures for Current-Collector-Free Supercapacitors.
Adv Mater. 2019 Sep;31(37):e1902725. doi: 10.1002/adma.201902725. Epub 2019 Jul 25.
6
Multimaterial 3D Printing of Graphene-Based Electrodes for Electrochemical Energy Storage Using Thermoresponsive Inks.
ACS Appl Mater Interfaces. 2017 Oct 25;9(42):37136-37145. doi: 10.1021/acsami.7b10285. Epub 2017 Oct 11.
7
Architectural design and optimization of internal structures in 3D printed electrodes for superior supercapacitor performance.
J Colloid Interface Sci. 2025 Jan;677(Pt B):21-29. doi: 10.1016/j.jcis.2024.08.053. Epub 2024 Aug 9.
8
3D and 4D printing of MXene-based composites: from fundamentals to emerging applications.
Mater Horiz. 2024 Dec 9;11(24):6257-6288. doi: 10.1039/d4mh01056f.
10
Inkjet Printing Transparent and Conductive MXene (TiC) Films: A Strategy for Flexible Energy Storage Devices.
ACS Appl Mater Interfaces. 2021 Apr 21;13(15):17766-17780. doi: 10.1021/acsami.1c00724. Epub 2021 Apr 12.

本文引用的文献

1
MXene-based all-solid flexible electrochromic microsupercapacitor.
Microsyst Nanoeng. 2024 Jun 25;10:89. doi: 10.1038/s41378-024-00720-6. eCollection 2024.
3
Water-induced strong isotropic MXene-bridged graphene sheets for electrochemical energy storage.
Science. 2024 Feb 16;383(6684):771-777. doi: 10.1126/science.adj3549. Epub 2024 Feb 15.
4
Recent Advances in Flexible Wearable Supercapacitors: Properties, Fabrication, and Applications.
Adv Sci (Weinh). 2024 Feb;11(8):e2302172. doi: 10.1002/advs.202302172. Epub 2023 Aug 3.
7
MXene Derivatives for Energy Storage and Conversions.
Small Methods. 2023 Aug;7(8):e2201559. doi: 10.1002/smtd.202201559. Epub 2023 Feb 21.
8
Low-Temperature Resistant Stretchable Micro-Supercapacitor Based on 3D Printed Octet-Truss Design.
Small. 2023 Jun;19(23):e2207634. doi: 10.1002/smll.202207634. Epub 2023 Feb 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验