ANION Environmental Ltd, 26 Lykoudi Str., Athens, Ano Patissia, 11141, Greece.
Math Med Biol. 2024 Sep 16;41(3):192-224. doi: 10.1093/imammb/dqae008.
Epidemic models of susceptibles, exposed, infected, recovered and deceased (SΕIRD) presume homogeneity, constant rates and fixed, bilinear structure. They produce short-range, single-peak responses, hardly attained under restrictive measures. Tuned via uncertain I,R,D data, they cannot faithfully represent long-range evolution. A robust epidemic model is presented that relates infected with the entry rate to health care units (HCUs) via population averages. Model uncertainty is circumvented by not presuming any specific model structure, or constant rates. The model is tuned via data of low uncertainty, by direct monitoring: (a) of entries to HCUs (accurately known, in contrast to delayed and non-reliable I,R,D data) and (b) of scaled model parameters, representing population averages. The model encompasses random propagation of infections, delayed, randomly distributed entries to HCUs and varying exodus of non-hospitalized, as disease severity subdues. It closely follows multi-pattern growth of epidemics with possible recurrency, viral strains and mutations, varying environmental conditions, immunity levels, control measures and efficacy thereof, including vaccination. The results enable real-time identification of infected and infection rate. They allow design of resilient, cost-effective policy in real time, targeting directly the key variable to be controlled (entries to HCUs) below current HCU capacity. As demonstrated in ex post case studies, the policy can lead to lower overall cost of epidemics, by balancing the trade-off between the social cost of infected and the economic contraction associated with social distancing and mobility restriction measures.
易感者、暴露者、感染者、康复者和死亡者(SEIRD)的传染病模型假设同质性、恒定速率和固定的双线性结构。它们产生短程、单峰反应,在限制措施下很难实现。通过不确定的 I、R、D 数据进行调整,它们无法忠实地代表远程进化。提出了一种稳健的传染病模型,通过人群平均值将感染者与进入医疗机构(HCUs)的比率联系起来。通过不假设任何特定的模型结构或恒定速率来避免模型不确定性。通过直接监测来调整模型,使用低不确定性的数据:(a) 进入 HCUs 的人数(准确可知,与延迟和不可靠的 I、R、D 数据形成对比)和 (b) 代表人群平均值的缩放模型参数。该模型包含随机传播的感染、延迟的、随机分布的进入 HCUs 的人数以及非住院患者的不同流出,因为疾病严重程度减弱。它紧密跟随具有可能复发、病毒株和突变、不断变化的环境条件、免疫水平、控制措施及其效果(包括疫苗接种)的多种模式的传染病增长。结果可以实时识别感染者和感染率。它们允许实时设计具有弹性的、具有成本效益的政策,直接针对要控制的关键变量(进入 HCUs),低于当前 HCU 容量。如事后案例研究所示,该政策可以通过平衡感染的社会成本和与社会隔离和流动性限制措施相关的经济收缩之间的权衡,降低传染病的总体成本。