Suppr超能文献

个体参与者数据完整性工具的开发,用于评估使用个体参与者数据的随机试验的完整性。

Development of the individual participant data integrity tool for assessing the integrity of randomised trials using individual participant data.

机构信息

NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia.

Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia.

出版信息

Res Synth Methods. 2024 Nov;15(6):940-949. doi: 10.1002/jrsm.1739. Epub 2024 Aug 18.

Abstract

Increasing integrity concerns in medical research have prompted the development of tools to detect untrustworthy studies. Existing tools primarily assess published aggregate data (AD), though scrutiny of individual participant data (IPD) is often required to detect trustworthiness issues. Thus, we developed the IPD Integrity Tool for detecting integrity issues in randomised trials with IPD available. This manuscript describes the development of this tool. We conducted a literature review to collate and map existing integrity items. These were discussed with an expert advisory group; agreed items were included in a standardised tool and automated where possible. We piloted this tool in two IPD meta-analyses (including 116 trials) and conducted preliminary validation checks on 13 datasets with and without known integrity issues. We identified 120 integrity items: 54 could be conducted using AD, 48 required IPD, and 18 were possible with AD, but more comprehensive with IPD. An initial reduced tool was developed through consensus involving 13 advisors, featuring 11 AD items across four domains, and 12 IPD items across eight domains. The tool was iteratively refined throughout piloting and validation. All studies with known integrity issues were accurately identified during validation. The final tool includes seven AD domains with 13 items and eight IPD domains with 18 items. The quality of evidence informing healthcare relies on trustworthy data. We describe the development of a tool to enable researchers, editors, and others to detect integrity issues using IPD. Detailed instructions for its application are published as a complementary manuscript in this issue.

摘要

越来越多的医学研究诚信问题促使人们开发了检测不可靠研究的工具。现有的工具主要评估已发表的汇总数据(AD),但通常需要审查个体参与者数据(IPD)以检测可信度问题。因此,我们开发了用于检测具有可用 IPD 的随机试验中诚信问题的 IPD 诚信工具。本文描述了该工具的开发过程。我们进行了文献综述,以收集和映射现有的诚信项目。这些项目与一个专家咨询小组进行了讨论;达成一致的项目被纳入一个标准化的工具,并在可能的情况下实现自动化。我们在两项 IPD 荟萃分析(包括 116 项试验)中试用了该工具,并对 13 个具有和不具有已知诚信问题的数据集进行了初步验证检查。我们确定了 120 个诚信项目:54 个可以使用 AD 进行,48 个需要 IPD,18 个可以使用 AD,但使用 IPD 更全面。通过涉及 13 位顾问的共识,确定了一个初始简化工具,该工具具有四个领域的 11 个 AD 项目和八个领域的 12 个 IPD 项目。在试用和验证过程中,该工具不断得到改进。所有具有已知诚信问题的研究在验证过程中都被准确识别。最终的工具包括七个 AD 领域的 13 个项目和八个 IPD 领域的 18 个项目。依赖可信数据的医疗保健质量证据。我们描述了一种工具的开发,该工具可使研究人员、编辑人员和其他人员使用 IPD 来检测诚信问题。其应用的详细说明已作为补充文件在本期杂志上发表。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验