Hong Yan, Li Hanshuang, Long Chunshen, Liang Pengfei, Zhou Jian, Zuo Yongchun
State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China.
Fundam Res. 2024 Feb 9;4(4):770-776. doi: 10.1016/j.fmre.2024.01.020. eCollection 2024 Jul.
The increasing emergence of the time-series single-cell RNA sequencing (scRNA-seq) data, inferring developmental trajectory by connecting transcriptome similar cell states (i.e., cell types or clusters) has become a major challenge. Most existing computational methods are designed for individual cells and do not take into account the available time series information. We present IDTI based on the Increment of Diversity for Trajectory Inference, which combines time series information and the minimum increment of diversity method to infer cell state trajectory of time-series scRNA-seq data. We apply IDTI to simulated and three real diverse tissue development datasets, and compare it with six other commonly used trajectory inference methods in terms of topology similarity and branching accuracy. The results have shown that the IDTI method accurately constructs the cell state trajectory without the requirement of starting cells. In the performance test, we further demonstrate that IDTI has the advantages of high accuracy and strong robustness.
随着时间序列单细胞RNA测序(scRNA-seq)数据的不断涌现,通过连接转录组相似的细胞状态(即细胞类型或细胞簇)来推断发育轨迹已成为一项重大挑战。大多数现有的计算方法是针对单个细胞设计的,并未考虑可用的时间序列信息。我们提出了基于轨迹推断多样性增量的IDTI方法,该方法结合了时间序列信息和最小多样性增量方法来推断时间序列scRNA-seq数据的细胞状态轨迹。我们将IDTI应用于模拟的和三个真实的不同组织发育数据集,并在拓扑相似性和分支准确性方面将其与其他六种常用的轨迹推断方法进行比较。结果表明,IDTI方法无需起始细胞即可准确构建细胞状态轨迹。在性能测试中,我们进一步证明了IDTI具有高精度和强鲁棒性的优点。