College of Sciences, Inner Mongolia University of Technology, Hohhot, China.
State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot, China.
Commun Biol. 2024 Nov 25;7(1):1567. doi: 10.1038/s42003-024-07286-z.
Spatial Transcriptomics leverages gene expression profiling while preserving spatial location and histological images. However, processing the vast and noisy image data in spatial transcriptomics (ST) for precise recognition of spatial domains remains a challenge. In this study, we propose a method of EfNST for recognizing spatial domains, which employs an efficient composite scaling network of EfficientNet to learn multi-scale image features. Compared with other relevant algorithms on six data sets from three sequencing platforms, EfNST exhibits higher accuracy in discerning fine tissue structures, highlighting its strong scalability to data and operational efficiency. Under limited computing resources, the testing results on multiple data sets show that the EfNST algorithm runs faster while maintaining accuracy. The ablation studies of EfNST model demonstrate the significant effectiveness of the EfficientNet. Within the annotated data sets, EfNST showcases the ability to finely identify subregions within tissue structure and discover corresponding marker genes. In the unannotated data sets, EfNST successfully identifies minute regions within complex tissues and elucidated their spatial expression patterns in biological processes. In summary, EfNST presents a novel approach to inferring cellular spatial organization from discrete data spots with significant implications for the exploration of tissue structure and function.
空间转录组学利用基因表达谱分析,同时保留空间位置和组织学图像。然而,处理空间转录组学(ST)中庞大而嘈杂的图像数据,以精确识别空间域仍然是一个挑战。在这项研究中,我们提出了一种用于识别空间域的 EfNST 方法,该方法采用高效的 EfficientNet 复合缩放网络来学习多尺度图像特征。与来自三个测序平台的六个数据集的其他相关算法相比,EfNST 在辨别精细组织结构方面表现出更高的准确性,突出了其对数据和操作效率的强大可扩展性。在有限的计算资源下,对多个数据集的测试结果表明,EfNST 算法在保持准确性的同时运行速度更快。EfNST 模型的消融研究证明了 EfficientNet 的显著有效性。在已注释的数据集内,EfNST 展示了精细识别组织结构内的子区域并发现相应标记基因的能力。在未注释的数据集内,EfNST 成功地识别了复杂组织内的微小区域,并阐明了它们在生物过程中的空间表达模式。总之,EfNST 提出了一种从离散数据点推断细胞空间组织的新方法,对探索组织结构和功能具有重要意义。