Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany.
Angew Chem Int Ed Engl. 2024 Nov 18;63(47):e202411472. doi: 10.1002/anie.202411472. Epub 2024 Oct 14.
Motional properties of proteins govern recognition, catalysis, and regulation. The dynamics of tightly interacting residues can form intramolecular dynamic networks, dependencies fine-tuned by evolution to optimize a plethora of functional aspects. The constructive interaction of residues from different proteins to assemble intermolecular dynamic networks is a similarly likely case but has escaped thorough experimental assessment due to interfering association/dissociation dynamics. Here, we use fast-MAS solid-state N R NMR relaxation dispersion aided by molecular-dynamics simulations to mechanistically assess the hierarchy of individual μs timescale motions arising from a crystal-crystal contact, in the absence of translational motion. In contrast to the monomer, where particular mutations entail isolated perturbations, specific intermolecular interactions couple the motional properties between distant residues in the same protein. The mechanistic insights obtained from this conceptual work may improve our understanding on how intramolecular allostery can be tuned by intermolecular interactions via assembly of dynamic networks from previously isolated elements.
蛋白质的运动性质控制着识别、催化和调节。紧密相互作用的残基的动力学可以形成分子内动态网络,这些依赖性通过进化进行微调,以优化大量的功能方面。不同蛋白质的残基的建设性相互作用来组装分子间动态网络也是一个类似的情况,但由于干扰的缔合/解离动力学,它还没有经过彻底的实验评估。在这里,我们使用快速-MAS 固态 N R NMR 弛豫色散辅助的分子动力学模拟,从机制上评估了晶体-晶体接触中单个 μs 时间尺度运动的层次,而不考虑平移运动。与单体不同,特定突变导致孤立的扰动,特定的分子间相互作用将同一蛋白质中远距离残基的运动性质耦合在一起。从这项概念性工作中获得的机制见解可能会增进我们对如何通过组装来自先前分离的元件的动态网络,通过分子间相互作用来调节分子内变构的理解。