Suppr超能文献

用于先进锌离子混合电容器的富氮掺杂多孔碳的超分子优化缺陷工程

Supermolecule-Opitimized Defect Engineering of Rich Nitrogen-Doped Porous Carbons for Advanced Zinc-Ion Hybrid Capacitors.

作者信息

Zhang Juan, Qin Fangfang, Zuo Pingping, Shen Wenzhong

机构信息

State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, PR China.

Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China.

出版信息

ChemSusChem. 2025 Jan 14;18(2):e202401311. doi: 10.1002/cssc.202401311. Epub 2024 Oct 22.

Abstract

Pitch-based porous carbons with adjustable surface chemical property and controllable pore structure are regarded as promising cathode materials for aqueous zinc-ion hybrid capacitors (ZIHCs), while its disordered carbon matrix and microstructure as well as insufficient surface defects often result in low Zn-storage capacity and poor rate capability of ZIHCs. Herein, a synergetic strategy of self-assembled supermolecule and enriched defective carbon engineering was developed to achieve ultrahigh edge-nitrogen doping for ZIHCs. The crystallite defects and surface structure of porous carbon could be effectively achieved through grafting electronegative oxygen-containing small molecules and high-level nitrogen-containing functional groups between modified polycyclic aromatic hydrocarbon and supermolecule framework. The optimized three-dimensional carbon structure delivered high capacity of 218 mAh g at 0.2 A g, fast charge/discharge capability, enhanced energy density (165.4 Wh kg) and superior cycling stability (95 % retention after 10000 cycles as cathode of ZIHCs). This provided new insight into the controllable synthesis of carbon cathodes for ZIHCs and expects to prepare functional porous carbon by supermolecules and special precursors.

摘要

具有可调节表面化学性质和可控孔结构的基于沥青的多孔碳被认为是水系锌离子混合电容器(ZIHC)很有前景的阴极材料,但其无序的碳基体和微观结构以及表面缺陷不足,常常导致ZIHC的锌存储容量低和倍率性能差。在此,开发了一种自组装超分子和富缺陷碳工程的协同策略,以实现ZIHC的超高边缘氮掺杂。通过在改性多环芳烃和超分子骨架之间接枝带负电的含氧小分子和高含量的含氮官能团,可以有效地实现多孔碳的微晶缺陷和表面结构。优化后的三维碳结构在0.2 A g下具有218 mAh g的高容量、快速充放电能力、提高的能量密度(165.4 Wh kg)和优异的循环稳定性(作为ZIHC的阴极在10000次循环后保持95%)。这为ZIHC碳阴极的可控合成提供了新的见解,并期望通过超分子和特殊前驱体制备功能多孔碳。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验