Shen Zekai, Wang Tianheng, Luo Jing, Liu Ren, Ngai To, Sun Guanqing
Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122 Jiangsu, China.
Department of Chemistry, The Chinese University of Hong Kong, Shatin N.T., Hong Kong, 999077 Special Administrative Region, China.
Langmuir. 2024 Sep 3;40(35):18652-18660. doi: 10.1021/acs.langmuir.4c02219. Epub 2024 Aug 19.
Incorporating unmodified silica nanoparticles onto polymer latexes to fabricate aqueous polymer dispersions without relying on electrostatic attraction during the Pickering emulsion polymerization process still faces challenges. For negatively charged silica nanoparticles to successfully adsorb onto polymer latexes, particularly in an anionic initiator emulsion polymerization system, they have remained elusive without the use of auxiliary monomers and cationic initiators. This study investigates various experimental parameters, such as emulsion polymerization temperature, monomer solubility, salt concentration, and cation type, to elucidate the factors influencing the adsorption of unmodified silica nanoparticles in Pickering emulsion polymerization. While poly(methyl methacrylate) (PMMA)/SiO hybrid latexes can be obtained under pH conditions of 5-6 and at temperatures of 65 °C or below, the loading rate of silica nanoparticles decreases as the reaction temperature increases, resulting in bare PMMA latexes without silica nanoparticle adsorption at temperatures exceeding 70 °C. Introducing styrene (St) into the monomer mixture with methyl methacrylate in a ratio of up to 10 wt % leads to a gradual decrease in silica nanoparticle loading rate, from 27.3 to 8.2 wt %, attributed to the low solubility of St in water. Furthermore, the presence of sodium ions (Na) is found to be crucial for silica nanoparticle adsorption onto PMMA latexes, as the sodium ions have a stabilizing effect on both the silica nanoparticles and the silica nanoparticle-armored latexes. These findings highlight the complex nature of Pickering emulsion polymerization in the presence of unmodified silica nanoparticles, demonstrating that the loading rate of silica nanoparticles onto polymer latexes is influenced by various factors. These insights pave the way for developing aqueous polymer dispersions with high silica nanoparticle loading rates onto polymer latexes, which is a desirable trait in the coating industry.
在皮克林乳液聚合过程中,将未改性的二氧化硅纳米颗粒引入聚合物胶乳以制备水性聚合物分散体,且不依赖静电吸引,这仍然面临挑战。对于带负电荷的二氧化硅纳米颗粒要成功吸附到聚合物胶乳上,特别是在阴离子引发剂乳液聚合体系中,如果不使用辅助单体和阳离子引发剂,它们仍然难以实现。本研究考察了各种实验参数,如乳液聚合温度、单体溶解度、盐浓度和阳离子类型,以阐明影响未改性二氧化硅纳米颗粒在皮克林乳液聚合中吸附的因素。虽然聚甲基丙烯酸甲酯(PMMA)/SiO杂化胶乳可以在pH值为5 - 6且温度为65℃或更低的条件下获得,但随着反应温度升高,二氧化硅纳米颗粒的负载率降低,导致在温度超过70℃时没有二氧化硅纳米颗粒吸附的纯PMMA胶乳。将苯乙烯(St)以高达10 wt%的比例引入与甲基丙烯酸甲酯的单体混合物中,会导致二氧化硅纳米颗粒负载率逐渐降低,从27.3 wt%降至8.2 wt%,这归因于St在水中的低溶解度。此外,发现钠离子(Na)的存在对于二氧化硅纳米颗粒吸附到PMMA胶乳上至关重要,因为钠离子对二氧化硅纳米颗粒和二氧化硅纳米颗粒包覆的胶乳都有稳定作用。这些发现突出了在存在未改性二氧化硅纳米颗粒的情况下皮克林乳液聚合的复杂性,表明二氧化硅纳米颗粒在聚合物胶乳上的负载率受多种因素影响。这些见解为开发在聚合物胶乳上具有高二氧化硅纳米颗粒负载率的水性聚合物分散体铺平了道路,这在涂料行业是一个理想的特性。