Sun Jiayi, Li Heqing, Chen Yujie, An Xianghai
School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney, NSW, 2006, Australia.
Adv Sci (Weinh). 2024 Oct;11(39):e2407283. doi: 10.1002/advs.202407283. Epub 2024 Aug 19.
The emergence of multi-principal element alloys (MPEAs) heralds a transformative shift in the design of high-performance alloys. Their ingrained chemical complexities endow them with exceptional mechanical and functional properties, along with unparalleled microscopic plastic mechanisms, sparking widespread research interest within and beyond the metallurgy community. In this overview, a unique yet prevalent mechanistic process in the renowned FeMnCoCrNi-based MPEAs is focused on: the dynamic bidirectional phase transformation involving the forward transformation from a face-centered-cubic (FCC) matrix into a hexagonal-close-packed (HCP) phase and the reverse HCP-to-FCC transformation. The light is shed on the fundamental physical mechanisms and atomistic pathways of this intriguing dual-phase transformation. The paramount material parameter of intrinsic negative stacking fault energy in MPEAs and the crucial external factors c, furnishing thermodynamic, and kinetic impetus to trigger bidirectional transformation-induced plasticity (B-TRIP) mechanisms, are thorougly devled into. Furthermore, the profound significance of the distinct B-TRIP behavior in shaping mechanical properties and creating specialized microstructures c to harness superior material characteristics is underscored. Additionally, critical insights are offered into key challenges and future striving directions for comprehensively advancing the B-TRIP mechanism and the mechanistic design of next-generation high-performing MPEAs.
多主元合金(MPEAs)的出现预示着高性能合金设计的变革性转变。其内在的化学复杂性赋予它们卓越的力学和功能特性,以及无与伦比的微观塑性机制,引发了冶金界内外广泛的研究兴趣。在本综述中,重点关注了著名的FeMnCoCrNi基MPEAs中一个独特而普遍的机理过程:动态双向相变,包括从面心立方(FCC)基体向前转变为六方密排(HCP)相以及反向的HCP到FCC转变。揭示了这种有趣的双相转变的基本物理机制和原子路径。深入探讨了MPEAs中固有负堆垛层错能这一至关重要的材料参数以及为触发双向转变诱发塑性(B-TRIP)机制提供热力学和动力学动力的关键外部因素。此外,强调了独特的B-TRIP行为在塑造力学性能和创造特殊微观结构以利用优异材料特性方面的深远意义。此外,还对全面推进B-TRIP机制和下一代高性能MPEAs的机理设计的关键挑战和未来努力方向提供了重要见解。