Pankovich Brendan, Kan Angus, Wan Kwok Ho, Ostmann Maike, Neville Alex, Omkar Srikrishna, Sohbi Adel, Brádler Kamil
ORCA Computing, United Kingdom.
Phys Rev Lett. 2024 Aug 2;133(5):050604. doi: 10.1103/PhysRevLett.133.050604.
We propose fault-tolerant architectures based on performing projective measurements in the Greenberger-Horne-Zeilinger (GHZ) basis on constant-sized, entangled resource states. We present linear-optical constructions of the architectures, where the GHZ-state measurements are encoded to suppress the errors induced by photon loss and the probabilistic nature of linear optics. Simulations of our constructions demonstrate high single-photon-loss thresholds compared to the state-of-the-art linear-optical architecture realized with encoded two-qubit fusion measurements performed on constant-sized resource states. We believe this result shows a resource-efficient path to achieving photonic fault-tolerant quantum computing.
我们提出了基于在固定大小的纠缠资源态上以格林伯格-霍恩-泽林格(GHZ)基进行投影测量的容错架构。我们展示了这些架构的线性光学构造,其中GHZ态测量被编码以抑制由光子损失和线性光学的概率性质引起的误差。与在固定大小的资源态上执行编码两比特融合测量所实现的现有线性光学架构相比,我们构造的模拟展示了高单光子损失阈值。我们相信这一结果展示了一条实现光子容错量子计算的资源高效途径。