Vernier Eric, Yeh Hsiu-Chung, Piroli Lorenzo, Mitra Aditi
Laboratoire de Probabilités, <a href="https://ror.org/02feahw73">Statistique et Modélisation CNRS</a>-<a href="https://ror.org/05f82e368">Université Paris Cité</a>-<a href="https://ror.org/02en5vm52">Sorbonne Université.</a> Paris, France.
Center for Quantum Phenomena, Department of Physics, <a href="https://ror.org/0190ak572">New York University</a>, 726 Broadway, New York, New York 10003, USA.
Phys Rev Lett. 2024 Aug 2;133(5):050606. doi: 10.1103/PhysRevLett.133.050606.
It is a classic result that certain interacting integrable spin chains host robust edge modes known as strong zero modes (SZMs). In this Letter, we extend this result to the Floquet setting of local quantum circuits, focusing on a prototypical model providing an integrable Trotterization for the evolution of the XXZ Heisenberg spin chain. By exploiting the algebraic structures of integrability, we show that an exact SZM operator can be constructed for these integrable quantum circuits in certain regions of parameter space. Our construction, which recovers a well-known result by Paul Fendley in the continuous-time limit, relies on a set of commuting transfer matrices known from integrability, and allows us to easily prove important properties of the SZM, including normalizabilty. Our approach is different from previous methods and could be of independent interest even in the Hamiltonian setting. Our predictions, which are corroborated by numerical simulations of infinite-temperature autocorrelation functions, are potentially interesting for implementations of the XXZ quantum circuit on available quantum platforms.
一个经典的结果是,某些相互作用的可积自旋链存在被称为强零模(SZM)的稳健边缘模式。在本信函中,我们将这一结果扩展到局部量子电路的弗洛凯(Floquet)情形,重点关注一个为XXZ海森堡自旋链的演化提供可积 Trotter 化的典型模型。通过利用可积性的代数结构,我们表明在参数空间的某些区域可以为这些可积量子电路构造一个精确的 SZM 算符。我们的构造在连续时间极限下恢复了保罗·芬德利(Paul Fendley)的一个著名结果,它依赖于一组从可积性中已知的对易转移矩阵,并使我们能够轻松证明 SZM 的重要性质,包括可归一性。我们的方法不同于先前的方法,即使在哈密顿量情形下也可能具有独立的研究价值。我们的预测得到了无限温度自相关函数数值模拟的证实,对于在现有量子平台上实现 XXZ 量子电路可能具有潜在的意义。