Shen Weiyu, Yao Jie, Yang Yue
State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, People's Republic of China.
Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing 100081, People's Republic of China.
Proc Natl Acad Sci U S A. 2024 Aug 27;121(35):e2405351121. doi: 10.1073/pnas.2405351121. Epub 2024 Aug 19.
Matter entanglement is a common chaotic structure found in both quantum and classical systems. For classical turbulence, viscous vortices are like sinews in fluid flows, storing and dissipating energy and accommodating strain and stress throughout a complex vortex network. However, to explain how the statistical properties of turbulence arise from elemental vortical structures remains challenging. Here, we use the quantum vortex tangle as a skeleton to generate an instantaneous classical turbulent field with intertwined vortex tubes. Combining the quantum skeleton and tunable vortex thickness makes the synthetic turbulence satisfy key statistical laws, offering valuable insights for elucidating energy cascade and extreme events. By manipulating the elemental structures, we customize turbulence with desired statistical features. This bottom-up approach of designing turbulence provides a testbed for analyzing and modeling turbulence.
物质纠缠是在量子和经典系统中都能发现的一种常见的混沌结构。对于经典湍流而言,粘性涡旋就如同流体流动中的筋腱,在整个复杂的涡旋网络中储存和耗散能量,并承受应变和应力。然而,要解释湍流的统计特性是如何从基本涡旋结构中产生的,仍然具有挑战性。在此,我们以量子涡旋缠结为骨架,生成具有相互缠绕涡管的瞬时经典湍流场。将量子骨架与可调节的涡旋厚度相结合,使得合成湍流满足关键的统计规律,为阐明能量级联和极端事件提供了有价值的见解。通过操纵基本结构,我们能够定制具有所需统计特征的湍流。这种自下而上设计湍流的方法为分析和模拟湍流提供了一个试验平台。