Suppr超能文献

脑电图与心跳相关的频谱微扰反映了在逐次分类分析中内感受注意状态的动态变化。

Heartbeat-related spectral perturbation of electroencephalogram reflects dynamic interoceptive attention states in the trial-by-trial classification analysis.

机构信息

Graduate School of Medical Science, Brain Korea 21 Project, Department of Nuclear Medicine, Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea; Center for Systems and Translational Brain Science, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea.

Center for Systems and Translational Brain Science, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea; Department of Cognitive Science, Yonsei University, Seoul, Republic of Korea.

出版信息

Neuroimage. 2024 Oct 1;299:120797. doi: 10.1016/j.neuroimage.2024.120797. Epub 2024 Aug 17.

Abstract

Attending to heartbeats for interoceptive awareness initiates distinct electrophysiological responses synchronized with the R-peaks of an electrocardiogram (ECG), such as the heartbeat-evoked potential (HEP). Beyond HEP, this study proposes heartbeat-related spectral perturbation (HRSP), a time-frequency map of the R-peak locked electroencephalogram (EEG), and explores its characteristics in identifying interoceptive attention states using a classification approach. HRSPs of EEG brain components specified by independent component analysis (ICA) were used for the offline and online classification of interoceptive states. A convolutional neural network (CNN) designed specifically for HRSP was applied to publicly available data from a binary-state experiment (attending to self-heartbeats and white noise) and data from our four-state classification experiment (attending to self-heartbeats, white noise, time passage, and toe) with diverse input feature conditions of HRSP. From the dynamic state perspective, we evaluated the primary frequency bands of HRSP and the minimal number of averaging epochs required to reflect changing interoceptive attention states without compromising accuracy. We also assessed the utility of group ICA and models for classifying HRSP in new participants. The CNN for trial-by-trial HRSP with actual R-peaks demonstrated significantly higher classification accuracy than HRSP with sham, i.e., randomly positioned, R-peaks. Gradient-weighted class activation mapping highlighted the prominent role of theta and alpha bands between 200-600 ms post-R-peak-features absent in classifications using sham HRSPs. Online classification benefits from employing a group ICA and classification model, ensuring reliable accuracy without individual EEG precollection. These results suggest HRSP's potential to reflect interoceptive attention states, proposing transformative implications for clinical applications.

摘要

关注心跳以产生内感受意识会引发与心电图 (ECG) 的 R 波峰同步的独特电生理反应,例如心跳诱发电位 (HEP)。除了 HEP 之外,本研究还提出了与心跳相关的频谱扰动 (HRSP),这是一种 R 波峰锁定脑电图 (EEG) 的时频图谱,并通过分类方法探索了其在识别内感受注意状态中的特征。使用独立成分分析 (ICA) 指定的 EEG 脑成分的 HRSP 用于内感受状态的离线和在线分类。专门为 HRSP 设计的卷积神经网络 (CNN) 应用于来自二元状态实验(关注自我心跳和白噪声)的公开可用数据以及我们的四状态分类实验(关注自我心跳、白噪声、时间流逝和脚趾)数据,其中 HRSP 的输入特征条件多种多样。从动态状态的角度评估了 HRSP 的主要频带和反映内感受注意状态变化而不影响准确性所需的最小平均时间窗口数。我们还评估了组 ICA 和模型在新参与者中分类 HRSP 的效用。具有实际 R 波峰的 HRSP 的逐次试验 CNN 显示出比具有假,即随机放置的 R 波峰的 HRSP 更高的分类准确性。梯度加权类激活图突出显示了在使用假 HRSP 进行分类时不存在的 R 波峰后 200-600ms 之间的 theta 和 alpha 波段的重要作用。在线分类受益于使用组 ICA 和分类模型,确保了可靠的准确性,而无需进行个体 EEG 预采集。这些结果表明 HRSP 有潜力反映内感受注意状态,为临床应用提出了变革性的意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验