Suppr超能文献

多重耐药菌医院获得性感染(HAI)及定植的预测:一项系统评价

Prediction of multidrug-resistant bacteria (MDR) hospital-acquired infection (HAI) and colonisation: A systematic review.

作者信息

Dantas Leila Figueiredo, Peres Igor Tona, Antunes Bianca Brandão de Paula, Bastos Leonardo S L, Hamacher Silvio, Kurtz Pedro, Martin-Loeches Ignacio, Bozza Fernando Augusto

机构信息

Department of Industrial Engineering, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.

IDOR, D'Or Institute for Research and Education, Rio de Janeiro, RJ, Brazil.

出版信息

Infect Dis Health. 2025 Feb;30(1):50-60. doi: 10.1016/j.idh.2024.07.003. Epub 2024 Aug 18.

Abstract

BACKGROUND

Hospital-Acquired Infections (HAI) represent a public health priority in most countries worldwide. Our main objective was to systematically review the quality of the predictive modeling literature regarding multidrug-resistant gram-negative bacteria in Intensive Care Units (ICUs).

METHODS

We conducted and reported a Systematic Literature Review according to the recommendations of the PRISMA statement. We analysed the quality of the articles in terms of adherence to the TRIPOD checklist.

RESULTS

The initial search identified 1935 papers and 15 final articles were included in the review. Most studies analysed used traditional prediction models (logistic regression), and only three developed machine-learning techniques. We noted poor adherence to the main methodological issues recommended in the TRIPOD checklist to develop prediction models, such as handling missing data (20% adherence), model-building procedures (20% adherence), assessing model performance (47% adherence), and reporting performance measures (33% adherence).

CONCLUSIONS

Our review found few studies that use efficient alternatives to predict the acquisition of multidrug-resistant gram-negative bacteria in ICUs. Furthermore, we noted a lack of strategies for dealing with missing data, feature selection, and imbalanced datasets, a common problem in HAI studies.

摘要

背景

医院获得性感染(HAI)是全球大多数国家公共卫生的重点关注对象。我们的主要目标是系统回顾关于重症监护病房(ICU)中多重耐药革兰氏阴性菌预测模型文献的质量。

方法

我们根据PRISMA声明的建议进行并报告了一项系统文献回顾。我们依据TRIPOD清单的遵循情况分析了文章的质量。

结果

初步检索识别出1935篇论文,15篇最终文章纳入本回顾。大多数分析研究使用传统预测模型(逻辑回归),仅有三项研究采用了机器学习技术。我们注意到在遵循TRIPOD清单中推荐的用于开发预测模型的主要方法学问题方面情况不佳,例如处理缺失数据(遵循率20%)、模型构建程序(遵循率20%)、评估模型性能(遵循率47%)以及报告性能指标(遵循率33%)。

结论

我们的回顾发现很少有研究使用有效的替代方法来预测ICU中多重耐药革兰氏阴性菌的获得情况。此外,我们注意到在处理缺失数据、特征选择和数据集不平衡方面缺乏策略,而这是HAI研究中常见的问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验