Zhao Wenting, Sun Pei, Li Wei, Shang Linping
College of Nursing, Changzhi Medical College, Changzhi, Shanxi, People's Republic of China.
College of Nursing, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China.
Infect Drug Resist. 2025 May 6;18:2255-2269. doi: 10.2147/IDR.S459830. eCollection 2025.
Multidrug-resistant organism (MDRO) infections pose a significant global health threat, particularly in intensive care units (ICUs), where delayed identification exacerbates clinical outcomes. Although machine learning (ML) holds promise for infection prediction, the opaque nature of complex algorithms impedes clinical adoption. This study evaluated an interpretable machine learning model incorporating SHapley Additive exPlanations (SHAP) to predict MDRO infections in ICU patients.
A retrospective cohort study was conducted on 888 ICU patients (2020-2022) from a tertiary hospital in China. Following TRIPOD guidelines, key predictors were identified using Lasso regression from a comprehensive set of clinical variables, including demographics, treatments, and laboratory data. Six machine learning algorithms-Neural Networks, Random Forests, Support Vector Machines, Logistic Regression, Decision Trees, and Gaussian Naive Bayes-were evaluated based on AUC, accuracy, and calibration curves. SHAP analysis provided both global and local interpretability.
Among 825 eligible cases (375 MDRO infections), the Random Forest model exhibited the highest performance (AUC = 0.83, accuracy = 76.7%). SHAP analysis identified urinary catheterization, ventilator use, and prolonged antibiotic exposure as key modifiable risk factors. Case-level interpretation via dynamic force plots illustrated individualized risk stratification. Decision curve analysis indicated clinical utility within probability thresholds of 0.44-0.60.
This study establishes an interpretable prediction framework integrating RF algorithms with SHAP explainability, balancing predictive accuracy with clinical transparency. The model's dynamic visualization capabilities support individualized risk assessment and evidence-based antimicrobial stewardship. Integration into hospital information systems with real-time dashboards could enhance early intervention strategies.
多重耐药菌(MDRO)感染对全球健康构成重大威胁,尤其是在重症监护病房(ICU),感染的延迟识别会使临床结局恶化。尽管机器学习(ML)在感染预测方面具有潜力,但复杂算法的不透明性阻碍了其在临床上的应用。本研究评估了一种结合SHapley值加法解释(SHAP)的可解释机器学习模型,用于预测ICU患者的MDRO感染。
对中国一家三级医院的888例ICU患者(2020 - 2022年)进行回顾性队列研究。遵循TRIPOD指南,从包括人口统计学、治疗和实验室数据在内的一组全面临床变量中,使用Lasso回归确定关键预测因素。基于AUC、准确性和校准曲线,对六种机器学习算法——神经网络、随机森林、支持向量机、逻辑回归、决策树和高斯朴素贝叶斯——进行了评估。SHAP分析提供了全局和局部可解释性。
在825例符合条件的病例(375例MDRO感染)中,随机森林模型表现出最高性能(AUC = 0.83,准确性 = 76.7%)。SHAP分析确定导尿、使用呼吸机和长期使用抗生素是关键的可改变风险因素。通过动态力图进行的病例水平解释说明了个性化风险分层。决策曲线分析表明在概率阈值为0.44 - 0.60时具有临床实用性。
本研究建立了一个将随机森林算法与SHAP可解释性相结合的可解释预测框架,在预测准确性与临床透明度之间取得平衡。该模型的动态可视化功能支持个性化风险评估和循证抗菌药物管理。与实时仪表板集成到医院信息系统中可以增强早期干预策略。