Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland.
Department of Physics and Astronomy, Texas Christian University, Fort Worth, Texas, USA.
Luminescence. 2024 Aug;39(8):e4865. doi: 10.1002/bio.4865.
We studied spectral properties of 1,N-etheno-2-aminopurine after immobilization in poly (vinyl alcohol) films. The absorption spectrum of 1,N-ε2APu consists of two peaks centered at 300 and 370 nm, and the fluorescence spectrum has maximum at about 460 nm. The fluorescence quantum efficiency is 62%. The fluorescence anisotropy reaches a value of 0.3 at longer wavelengths, while it is low at shorter wavelengths (corresponding to the second single excited state). The 1,N-ε2APu has a relatively long fluorescence lifetime of about 16 ns and a noticeable room temperature phosphorescence with a lifetime of about 220 ms. A broad phosphorescence emission band (425-675 nm) is centered at about 530 nm and markedly overlaps with fluorescence at shorter wavelengths. Surprisingly, the phosphorescence excitation spectrum of 1,N-ε2APu-doped poly (vinyl alcohol) film differs from the absorption and fluorescence excitation spectra. The strongest room temperature phosphorescence excitation is about 335 nm. At longer excitation wavelengths, above 450 nm, where fluorescence cannot be excited, a triplet excitation is still possible. The 1,N-ε2APu phosphorescence anisotropy spectra confirm direct triplet state excitation. The ability to excite molecules at long wavelengths can find applications in the study of biological molecules that are unstable when excited at high energies.
我们研究了 1,N-亚乙基-2-氨基嘌呤(1,N-ε2APu)在聚(乙烯醇)薄膜中固定化后的光谱性质。1,N-ε2APu 的吸收光谱由两个峰值组成,中心分别位于 300nm 和 370nm,荧光光谱的最大发射波长约为 460nm。荧光量子产率为 62%。荧光各向异性在较长波长处达到 0.3 的值,而在较短波长处(对应于第二单重激发态)较低。1,N-ε2APu 的荧光寿命约为 16ns,室温磷光寿命约为 220ms,具有较长的荧光寿命和显著的室温磷光。一个宽的磷光发射带(425-675nm)以约 530nm 为中心,与较短波长的荧光明显重叠。令人惊讶的是,掺杂聚(乙烯醇)薄膜中的 1,N-ε2APu 的磷光激发光谱与吸收和荧光激发光谱不同。最强的室温磷光激发波长约为 335nm。在较长的激发波长(450nm 以上)处,尽管不能激发荧光,但仍可以进行三重态激发。1,N-ε2APu 的磷光各向异性光谱证实了直接三重态激发。在长波长激发分子的能力可以在研究不稳定的生物分子时得到应用,因为这些生物分子在高能激发下不稳定。