Dalela Srajan, Balaji P S, Leblouba Moussa, Trivedi Suverna, Kalam Abul
Materials and Wave Propagation Lab, Department of Mechanical Engineering, National Institute of Technology Rourkela, Rourkela, 769008, India.
Department of Civil and Environmental Engineering, University of Sharjah, P.O.Box 27272, Sharjah, United Arab Emirates.
Sci Rep. 2024 Aug 19;14(1):19195. doi: 10.1038/s41598-024-70126-x.
This work introduces a novel metastructure designed for quasi-zero-stiffness (QZS) properties based on the High Static and Low Dynamic Stiffness mechanism. The metastructure consists of four-unit cells arranged in parallel, each incorporating inclined beams and semicircular arches. Under vertical compression, the inclined beams exhibit buckling and snap-through behavior, contributing negative stiffness, while the semicircular arches provide positive stiffness through bending-dominated behavior. The design procedure to achieve QZS is established and validated through finite element analysis and experimental investigations. The static analysis confirms a QZS region for specific displacement. Dynamic behavior is analyzed using a nonlinear dynamic equation solved using the Harmonic Balance Method, validated experimentally with transmissibility curves showing sudden jump down with effective vibration isolation. Parametric studies with varied payload masses and excitation amplitudes further verify the ability to of metastructure to attenuate vibrations effectively in low-frequency ranges.
这项工作基于高静态和低动态刚度机制,介绍了一种为实现准零刚度(QZS)特性而设计的新型超结构。该超结构由四个平行排列的单元组成,每个单元都包含倾斜梁和半圆形拱。在垂直压缩下,倾斜梁表现出屈曲和跳跃行为,产生负刚度,而半圆形拱通过以弯曲为主的行为提供正刚度。通过有限元分析和实验研究,建立并验证了实现QZS的设计过程。静态分析确定了特定位移下的QZS区域。使用谐波平衡法求解的非线性动力学方程分析动态行为,并通过传递率曲线进行实验验证,结果显示有效隔振时会突然下降。对不同payload质量和激励幅度的参数研究进一步验证了超结构在低频范围内有效衰减振动的能力。 (注:原文中“payload masses”不太明确准确含义,暂保留英文未翻译)