Scheinker Alexander
Applied Electrodynamics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
Sci Rep. 2024 Aug 19;14(1):19210. doi: 10.1038/s41598-024-70302-z.
Advanced accelerator-based light sources such as free electron lasers (FEL) accelerate highly relativistic electron beams to generate incredibly short (10s of femtoseconds) coherent flashes of light for dynamic imaging, whose brightness exceeds that of traditional synchrotron-based light sources by orders of magnitude. FEL operation requires precise control of the shape and energy of the extremely short electron bunches whose characteristics directly translate into the properties of the produced light. Control of short intense beams is difficult due to beam characteristics drifting with time and complex collective effects such as space charge and coherent synchrotron radiation. Detailed diagnostics of beam properties are therefore essential for precise beam control. Such measurements typically rely on a destructive approach based on a combination of a transverse deflecting resonant cavity followed by a dipole magnet in order to measure a beam's 2D time vs energy longitudinal phase-space distribution. In this paper, we develop a non-invasive virtual diagnostic of an electron beam's longitudinal phase space at megapixel resolution (1024 × 1024) based on a generative conditional diffusion model. We demonstrate the model's generative ability on experimental data from the European X-ray FEL.
基于加速器的先进光源,如自由电子激光(FEL),能将高相对论性电子束加速,以产生极短(数十飞秒)的相干光脉冲用于动态成像,其亮度比传统基于同步加速器的光源高出几个数量级。FEL运行需要精确控制极短电子束团的形状和能量,这些电子束团的特性直接决定了所产生光的特性。由于束流特性随时间漂移以及存在诸如空间电荷和相干同步辐射等复杂的集体效应,控制短强束很困难。因此,对束流特性进行详细诊断对于精确的束流控制至关重要。此类测量通常依赖于一种破坏性方法,该方法基于横向偏转谐振腔和偶极磁铁的组合,以测量束流的二维时间与能量纵向相空间分布。在本文中,我们基于生成条件扩散模型,开发了一种以百万像素分辨率(1024×1024)对电子束纵向相空间进行非侵入式虚拟诊断的方法。我们在欧洲X射线自由电子激光的实验数据上展示了该模型的生成能力。