Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India.
LNK International Inc, Hauppauge, New York, 11788, USA.
AAPS PharmSciTech. 2024 Aug 19;25(7):189. doi: 10.1208/s12249-024-02915-6.
The intricate process of protein binding orchestrates crucial drug interactions within the bloodstream, facilitating the formation of soluble complexes. This research endeavours to improve the dissolution and oral bioavailability of Rifampicin (RMP) by strategically manipulating drug-protein binding dynamics and the hydrophobic characteristics of human serum albumin (HSA). Various precipitation techniques leveraging methanol, ammonium sulfate, and heat treatment were meticulously employed to tailor the properties of colloidal albumin (HSA NPs). The resultant complexes underwent comprehensive characterization encompassing evaluations of hydrophobicity, size distribution, surface charge, and structural analyses through FTIR, TG-DSC, XRD, and morphological examinations. The findings revealed a significant binding affinity of 78.07 ± 6.6% with native albumin, aligning with prior research. Notably, the complex RMP-HSA NPs-M13, synthesized via the methanolic precipitation method, exhibited the most substantial complexation, achieving a remarkable 3.5-fold increase, followed by the ammonium sulfate (twofold) and heat treatment (1.07-fold) methods in comparison to native albumin binding. The gastric simulated media exhibited accelerated drug release kinetics, with maximal dissolution achieved within two hours, contrasting with the prolonged release observed under intestinal pH conditions. These findings translated into significant improvements in drug permeation, as evidenced by pharmacokinetic profiles demonstrating elevated Cmax, AUC, t1/2, and MRT values for RMP-HSA NPs-M13 compared to free RMP. In summary, this innovative approach underscores the potential of precipitation methods in engineering stable colloidal carrier systems tailored to enhance the oral bioavailability of poorly soluble drugs, offering a pragmatic and scalable alternative to conventional surfactants, polymers, or high-energy methods for complex formation and production.
蛋白质结合的复杂过程在血液中调控着关键的药物相互作用,促进可溶性复合物的形成。本研究旨在通过策略性地操纵药物-蛋白质结合动力学和人血清白蛋白(HSA)的疏水性特征,改善利福平(RMP)的溶解和口服生物利用度。利用甲醇、硫酸铵和热处理的各种沉淀技术,精心调整胶体白蛋白(HSA NPs)的性质。对所得复合物进行了全面的特性评估,包括疏水性、粒径分布、表面电荷以及通过傅里叶变换红外光谱(FTIR)、热重-差示扫描量热法(TG-DSC)、X 射线衍射(XRD)和形态学检查进行的结构分析。结果表明,与先前的研究一致,与天然白蛋白的结合亲和力为 78.07±6.6%。值得注意的是,通过甲醇沉淀法合成的 RMP-HSA NPs-M13 复合物表现出最强的络合作用,与天然白蛋白结合相比,实现了显著的 3.5 倍增加,其次是硫酸铵(两倍)和热处理(1.07 倍)方法。胃模拟介质表现出加速的药物释放动力学,最大溶解度在两小时内达到,与在肠道 pH 条件下观察到的延长释放形成对比。这些发现转化为药物渗透的显著改善,药代动力学研究表明 RMP-HSA NPs-M13 的 Cmax、AUC、t1/2 和 MRT 值均高于游离 RMP。综上所述,这种创新方法强调了沉淀方法在工程稳定胶体载体系统中的潜力,该系统旨在提高难溶性药物的口服生物利用度,为复杂形成和生产提供了一种实用且可扩展的替代传统表面活性剂、聚合物或高能方法。