Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Sheppard Pratt Center of Excellence in Psilocybin Research and Treatment, Baltimore, MD, USA.
J Exp Anal Behav. 2024 Sep;122(2):117-138. doi: 10.1002/jeab.4200. Epub 2024 Aug 19.
Literature concerning operant behavioral economics shows a strong preference for the coefficient of determination (R) metric to (a) describe how well an applied model accounts for variance and (b) depict the quality of collected data. Yet R is incompatible with nonlinear modeling. In this report, we provide an updated discussion of the concerns with R. We first review recent articles that have been published in the Journal of the Experimental Analysis of Behavior that employ nonlinear models, noting recent trends in goodness-of-fit reporting, including the continued reliance on R. We then examine the tendency for these metrics to bias against linear-like patterns via a positive correlation between goodness of fit and the primary outputs of behavioral-economic modeling. Mathematically, R is systematically more stringent for lower values for discounting parameters (e.g., k) in discounting studies and lower values for the elasticity parameter (α) in demand analysis. The study results suggest there may be heterogeneity in how this bias emerges in data sets of varied composition and origin. There are limitations when using any goodness-of-fit measure to assess the systematic nature of data in behavioral-economic studies, and to address those we recommend the use of algorithms that test fundamental expectations of the data.
文献中关于操作性行为经济学的内容强烈倾向于使用决定系数(R)指标来(a)描述应用模型对变异的解释程度,以及(b)描述收集数据的质量。然而,R 与非线性建模不兼容。在本报告中,我们对 R 的问题进行了更新讨论。我们首先回顾了最近发表在《实验行为分析杂志》上的一些使用非线性模型的文章,注意到了拟合优度报告的最新趋势,包括对 R 的持续依赖。然后,我们通过拟合优度与行为经济学建模的主要输出之间的正相关,考察了这些指标对线性模式的偏差趋势。从数学上讲,在折扣研究中折扣参数(例如 k)的较低值和需求分析中弹性参数(α)的较低值的情况下,R 更为严格。研究结果表明,在具有不同组成和来源的数据集中,这种偏差的出现可能存在异质性。在使用任何拟合优度度量来评估行为经济学研究中数据的系统性质时存在局限性,为了解决这些问题,我们建议使用测试数据基本期望的算法。