Liu Yizhe, Yu Xiaoyong, Li Xintong, Liu Xin, Ye Chao, Ling Tao, Wang Xin, Zhu Zonglong, Shan Jieqiong
Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong.
Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang 150080, China.
ACS Nano. 2024 Sep 3;18(35):23894-23911. doi: 10.1021/acsnano.4c06516. Epub 2024 Aug 19.
The C-N coupling reaction demonstrates broad application in the fabrication of a wide range of high value-added organonitrogen molecules including fertilizers (e.g., urea), chemical feedstocks (e.g., amines, amides), and biomolecules (e.g., amino acids). The electrocatalytic C-N coupling pathways from waste resources like CO, NO, or NO under mild conditions offer sustainable alternatives to the energy-intensive thermochemical processes. However, the complex multistep reaction routes and competing side reactions lead to significant challenges regarding low yield and poor selectivity toward large-scale practical production of target molecules. Among diverse catalyst systems that have been developed for electrochemical C-N coupling reactions, the atomically dispersed catalysts with well-defined active sites provide an ideal model platform for fundamental mechanism elucidation. More importantly, the intersite synergy between the active sites permits the enhanced reaction efficiency and selectivity toward target products. In this Review, we systematically assess the dominant reaction pathways of electrocatalytic C-N coupling reactions toward various products including urea, amines, amides, amino acids, and oximes. To guide the rational design of atomically dispersed catalysts, we identify four key stages in the overall reaction process and critically discuss the corresponding catalyst design principles, namely, retaining NO/CO reactants on the catalyst surface, regulating the evolution pathway of N-/C- intermediates, promoting C-N coupling, and facilitating final hydrogenation steps. In addition, the advanced and effective theoretical simulation and characterization technologies are discussed. Finally, a series of remaining challenges and valuable future prospects are presented to advance rational catalyst design toward selective electrocatalytic synthesis of organonitrogen molecules.
C-N偶联反应在制备多种高附加值有机氮分子方面具有广泛应用,这些分子包括肥料(如尿素)、化学原料(如胺类、酰胺)和生物分子(如氨基酸)。在温和条件下,由一氧化碳、一氧化氮或一氧化二氮等废弃物资源出发的电催化C-N偶联途径,为能源密集型热化学过程提供了可持续的替代方案。然而,复杂的多步反应路线和竞争性副反应给大规模实际生产目标分子时的低产率和低选择性带来了重大挑战。在为电化学C-N偶联反应开发的各种催化剂体系中,具有明确活性位点的原子分散催化剂为阐明基本反应机理提供了理想的模型平台。更重要的是,活性位点之间的位点间协同作用能够提高反应效率和对目标产物的选择性。在这篇综述中,我们系统地评估了电催化C-N偶联反应生成包括尿素、胺类、酰胺、氨基酸和肟类等各种产物的主要反应途径。为了指导原子分散催化剂的合理设计,我们确定了整个反应过程中的四个关键阶段,并批判性地讨论了相应的催化剂设计原则,即把一氧化氮/一氧化碳反应物保留在催化剂表面、调控氮/碳中间体的演化途径、促进C-N偶联以及推动最后的氢化步骤。此外,还讨论了先进且有效的理论模拟和表征技术。最后,提出了一系列尚存的挑战和有价值的未来前景,以推动朝着选择性电催化合成有机氮分子的方向进行合理的催化剂设计。