Chaffee Helen K, Corona-Oceguera Eric, Couto Chris G, Anne Avani N, Rogers Elizabeth L, Galper Aaron L, Floyd Conor M, Venkatachalam Ananya, Gerbode Sharon J
Department of Physics, <a href="https://ror.org/025ecfn45">Harvey Mudd College</a>, Claremont, California 91711, USA.
Phys Rev E. 2024 Jul;110(1-1):014608. doi: 10.1103/PhysRevE.110.014608.
We find that localized rotations of hexagonal clusters of particles occur during rapid dissolution of grain boundary loops in two-dimensional colloidal crystals. These particle vortices, or rotating "granules," are distinct from established models for grain boundary diffusion, which predict that a crystal grain enclosed within another crystal will dissolve at a constant rate. Our measurements of colloidal crystal experiments and Brownian dynamics simulations reveal grain boundary motion that is described by two distinct processes: slow dissolution due to the diffusion of individual particles, and rapid dissolution due to collective granule rotation. In the latter process, hexagonal clusters of particles rotate together in granules whose shape and position are determined by the underlying moiré pattern. Furthermore, these vortices guide cooperative strings of particles that move along the edges of the hexagonal granules. Including this vortex mechanism may improve models for grain coarsening in polycrystalline materials, ultimately offering improved predictions for the time evolution of material properties.
我们发现,在二维胶体晶体中晶界环快速溶解期间,粒子的六边形簇会发生局部旋转。这些粒子涡旋,即旋转的“颗粒”,不同于已有的晶界扩散模型,后者预测被另一个晶体包围的晶粒将以恒定速率溶解。我们对胶体晶体实验和布朗动力学模拟的测量揭示了由两个不同过程描述的晶界运动:由于单个粒子的扩散导致的缓慢溶解,以及由于集体颗粒旋转导致的快速溶解。在后一个过程中,粒子的六边形簇在颗粒中一起旋转,其形状和位置由底层的莫尔图案决定。此外,这些涡旋引导沿着六边形颗粒边缘移动的粒子协同链。纳入这种涡旋机制可能会改进多晶材料中晶粒粗化的模型,最终为材料性能的时间演化提供更好的预测。