Song Zhao, Zhang Yu, Yang Yanhu, Chen Yidi, Ren Nanqi, Duan Xiaoguang
State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China.
School of Materials and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen, 518055, PR China.
Environ Sci Ecotechnol. 2024 Jul 8;22:100452. doi: 10.1016/j.ese.2024.100452. eCollection 2024 Nov.
Bisphenol A, a hazardous endocrine disruptor, poses significant environmental and human health threats, demanding efficient removal approaches. Traditional biological methods struggle to treat BPA wastewater with high chloride (Cl) levels due to the toxicity of high Cl to microorganisms. While persulfate-based advanced oxidation processes (PS-AOPs) have shown promise in removing BPA from high Cl wastewater, their widespread application is always limited by the high energy and chemical usage costs. Here we show that peroxymonosulfate (PMS) degrades BPA under high Cl concentrations. BPA was completely removed in 30 min with 0.3 mM PMS and 60 mM Cl. Non-radical reactive species, notably free chlorine species, including dissolved Cl(l), HClO, and ClO dominate the removal of BPA at temperatures ranging from 15 to 60 °C. Besides, free radicals, including OH and Cl , contribute minimally to BPA removal at 60 °C. Based on the elementary kinetic models, the production rate constant of Cl(l) (32.5 M s) is much higher than HClO (6.5 × 10 M s), and its degradation rate with BPA (2 × 10 M s) is also much faster than HClO (18 M s). Furthermore, the degradation of BPA by Cl(l) and HClO were enlarged by 10- and 18-fold at 60 °C compared to room temperature, suggesting waste heat utilization can enhance treatment performance. Overall, this research provides valuable insights into the effectiveness of direct PMS introduction for removing organic micropollutants from high Cl wastewater. It further underscores the critical kinetics and mechanisms within the PMS/Cl⁻ system, presenting a cost-effective and environmentally sustainable alternative for wastewater treatment.
双酚A是一种有害的内分泌干扰物,对环境和人类健康构成重大威胁,因此需要高效的去除方法。由于高浓度氯离子(Cl)对微生物具有毒性,传统生物方法难以处理高Cl含量的双酚A废水。虽然基于过硫酸盐的高级氧化工艺(PS-AOPs)在去除高Cl废水中的双酚A方面显示出前景,但其广泛应用一直受到高能量和化学品使用成本的限制。在此,我们表明过氧单硫酸盐(PMS)在高Cl浓度下可降解双酚A。在0.3 mM PMS和60 mM Cl存在下,双酚A在30分钟内被完全去除。在15至60°C的温度范围内,非自由基反应物种,特别是包括溶解态Cl⁰、HClO和ClO⁻在内的游离氯物种主导了双酚A的去除。此外,在60°C时,包括OH·和Cl·在内的自由基对双酚A去除的贡献极小。基于基元动力学模型,Cl⁰的生成速率常数(32.5 M⁻¹ s⁻¹)远高于HClO(6.5×10⁻⁴ M⁻¹ s⁻¹),其与双酚A的降解速率(2×10⁻² M⁻¹ s⁻¹)也比HClO(1.8×10⁻⁴ M⁻¹ s⁻¹)快得多。此外,与室温相比,60°C时Cl⁰和HClO对双酚A的降解分别扩大了10倍和18倍,这表明废热利用可以提高处理性能。总体而言,本研究为直接引入PMS去除高Cl废水中的有机微污染物的有效性提供了有价值的见解。它进一步强调了PMS/Cl⁻体系中的关键动力学和机制,为废水处理提供了一种经济高效且环境可持续的替代方案。