College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Center of the Ministry of Ecology and Environment, Donghua University, Shanghai 201620, China.
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
Environ Sci Technol. 2022 Aug 16;56(16):11750-11759. doi: 10.1021/acs.est.2c03904. Epub 2022 Jul 29.
Developing advanced heterogeneous catalysts with atomically dispersed active sites is an efficient strategy to boost the kinetics of peroxymonosulfate (PMS) activation for micropollutant removal. Here, we report a binary MoTiCT MXene-based electroactive filter system with abundant surface Mo vacancies for effective activation of PMS. The Mo vacancies assumed two essential roles: (i) as anchoring sites for Fe single atoms (Fe-SA) and (ii) as cocatalytic sites for the Fenton-like reaction. Fe-SA formed strong metal-oxygen bonds with the MoTiCT support, stabilizing at the sites previously occupied by Mo. The resulting Fe-SA/MoTiCT nanohybrid filter achieved 100% degradation of sulfamethoxazole (SMX) in the single-pass mode (hydraulic retention time <2 s) when assisted by an electric field (2.0 V). The rate constant ( = 2.89 min) for SMX removal was 24 and 67 times greater than that of Fe nanoparticles immobilized on MoTiCT and the pristine MoTiCT filter, respectively. Operation in the flow-through configuration outperformed the conventional batch reactor model ( = 0.17 min) due to convection-enhanced mass transport. The results obtained from experimental investigations and theoretical calculations suggested that atomically dispersed Fe-SA, anchored on Mo vacancies, was responsible for the adsorption and activation of PMS to produce sulfate radicals (SO) in the presence of an electric field. This study provides a proof-of-concept demonstration of an electroactive Fe-SA/MoTiCT filter for broader application in the treatment of water contaminated by emerging micropollutants.
开发具有原子分散活性位点的先进多相催化剂是提高过一硫酸盐 (PMS) 动力学以去除微污染物的有效策略。在这里,我们报告了一种基于二元 MoTiCT MXene 的电活性过滤系统,该系统具有丰富的表面 Mo 空位,可有效激活 PMS。Mo 空位发挥了两个重要作用:(i) 作为 Fe 单原子 (Fe-SA) 的锚定位点,(ii) 作为类 Fenton 反应的共催化位点。Fe-SA 与 MoTiCT 载体形成强金属-氧键,稳定在以前由 Mo 占据的位置。所得的 Fe-SA/MoTiCT 纳米杂化物过滤器在电场 (2.0 V) 辅助下,在单通模式 (水力停留时间 <2 s) 下实现了 100%的磺胺甲恶唑 (SMX) 降解。SMX 去除的速率常数 ( = 2.89 min) 分别比固定在 MoTiCT 上的 Fe 纳米颗粒和原始 MoTiCT 过滤器高 24 和 67 倍。由于对流增强的质量传递,在流动构型下的运行优于传统的批处理反应器模型 ( = 0.17 min)。实验研究和理论计算的结果表明,原子分散的 Fe-SA 锚定在 Mo 空位上,负责在电场存在下吸附和激活 PMS 以产生硫酸根自由基 (SO)。本研究为电活性 Fe-SA/MoTiCT 过滤器在处理受新兴微污染物污染的水方面的更广泛应用提供了概念验证。